viết được bao nhiêu số tự nhiên khác nhau có 4 chữ số mà ko dùng chữ số 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Caau1 :
Trong hệ thập phân có 10 chữ số 0, 1, 2, ....9. Số tự nhiên không chia hết cho 5 là các số có hàng đơn vị khác 0 và 5.
Vì số tự nhiên đó có các chữ số khác nhau, nên:
+ Nếu số có 1 chữ số thì có 8 số (trừ 0 và 5)
+ Nếu số có 2 chữ số thì có 8 cách chọn hàng đơn vị (trừ 0 và 5), có 8 cách chọn chữ số hàng chục (trừ 0 và chữ số đã chọn hàng đv). Tổng cộng có 8 x 8 = 8 mũ 2 = 64 số
+ Nếu số có 3 chữ số thì có 8 cách chọn hàng đơn vị (trừ 0 và 5), có 8 cách chọn chữ số hàng trăm (trừ 0 và chữ số đã chọn hàng đv), có 8 cáh chọn chữ số hàng chục (trừ 2 chữ số đã chọn ở hàng trăm và hàng đv. Tổng cộng có 8 x 8 x 8 = 8 mũ 3 = 512 số
..............xin chữa lại:
+ Nếu số có 4 chữ số thì có 8 x 8 x 7 x 8 số
+ Nếu số có 5 chữ số thì có 8 x 8 x 7 x 6x 8 số
+ Nếu có 10 chữ số thì có 8 x 8 x 7x 6 x 5 x 4x3x2x1x8 số khác nhau không chia hết cho 5.
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Câu 2 :
số các số có chữ số hàng chục trùng với chữ số hàng đơn vị : 9 số ( tương ứng với 9 chữ số 1, 2,...., 9 )
nếu chữ số hàng chục là x thì số các số có hàng chục là x và có số hàng đơn vị nhỏ hơn cũng là x ( vì số các số tự nhiên liều trước của 1 số, kể cả số 0 bằng chính số đó )
vậy nên số các số tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị là
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 ( số )
vậy có tất cả 45 tự nhiên có hai chữ số mà chữ số hàng chục lớn hơn chữ số hàng đơn vị
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
XÉT: hàng nghìn được 4 trường hợp.
hàng trăm được 3 trường hợp
hàng chục được 2 trường hợp
hàng đơn vị có 1 trường hợp
(các trường hpowj trong mỗi hàng không thể giống nhau vì 4 chữ số phải khcs nhau)
VẬY VIẾT ĐƯỢC TẤT CẢ 10 SỐ TỰ NHIÊN CÓ 4 C/S MÀ CÁC C/S ĐỀU KHÁC NHAU.
K MK NHA. CHÚC BN HỌC TỐT. ^_^
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
Các số An viết được là:
205; 207; 250; 257; 270,275.
502, 507; 520, 527; 570, 572.
702, 705; 720; 725; 750, 752.
Vậy An viết được tất cả 18 số.
a: 97532
b: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
c: \(\overline{abcd}\)
TH1: d=0
=>Có 5*4*3=60 số
TH2: d=5
=>Có 4*4*3=48 số
=>Có 60+48=108 số
5.Trường hợp 1 chữ số tận cùng là 0:
có 1 cách chọn hàng đơn vị,9 cách chọn hàng trăm , 8 cách chọn hàng chục.Tổng là 9 nhân 8 nhân 1 = 72 số
trường hợp 2 chữ số tận cùng là 5:
1 cách chọn hàng đơn vị,8 cách chọn hàng trăm và 9 cách chọn hàng chục.tổng là 8 nhân 8 nhân 1 =64
có tất cả các số có 3 chữ số khác nhau chia hết cho 5 là
72+64=136
Đ/S:136 số
giúp mình với ạ