K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7

Bài 2: 

\(a.A=3+3^2+3^3+...+3^{204}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{202}+3^{2023}+3^{204}\right)\\ =3\left(1+3+9\right)+3^4\left(1+3+9\right)+...+3^{202}\left(1+3+9\right)\\ =13\cdot\left(3+3^4+3^7+...+3^{202}\right)\)

Xết tổng \(3+3^4+3^7+...+3^{202}\)

Số lượng số hạng: (202 - 1) : 3 + 1 = 68 (số hạng) 

Mà: 3 lẻ; `3^4` lẻ; `3^7` lẻ; ...; `3^202` lẻ 

`=>3+3^4+3^7+...+3^202` chẵn (68 số lẻ cộng nhau) 

`=>3+3^4+3^7+...+3^202` chia hết cho 2 

`=>13*(3+3^4+3^7+...+3^202` chia hết cho 26 

\(b.B=3^{28}-27^9-9^{13}\\ =3^{28}-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{26}\cdot\left(3^2-3-1\right)\\ =3^{26}\cdot5\\ =3^{24}\cdot\left(3^2\cdot5\right)\\ =45\cdot3^{24}⋮45\)

\(c.5^{n+2}+3^{n+2}-3^n-5^n\\ =5^n\left(5^2-1\right)+3^n\left(3^2-1\right)\\ =24\cdot5^n+3^n\cdot8\\ =24\cdot5^n+3^{n-1}\cdot\left(3\cdot8\right)\left(n\ge1\right)\\ =24\cdot5^n+24\cdot3^{n-1}\\ =24\cdot\left(5^n+3^{n-1}\right)⋮24\)

31 tháng 7

tìm số tận cùng rồi chứng minh mà

 

số lớn nhất có 4 chữ số và số bé nhất có 4 cs cuoi cung co tong cac cs la 25 lan luot la 1699 va 9916

Tong 2 cs do la 11725

Ds 11725 

Hok tok 

!!

5 tháng 11 2015

 an vao:Chứng minh rằng tổng các số ghi trên vé xổ số có sáu chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 (các chữ số đầu có thể bằng 0).

3 tháng 1 2022

chữ v9e mik ko đọ đc

3 tháng 1 2022

vé ạ

 

14 tháng 10 2016

Ta gọi số cần tìm dạng abcabc. Ta có:

abcabc chia hết cho 13 = abc x 1001 chia hết cho 13

Mà 1001 chia hết cho 13 nên abc x 1001 phải chia hết cho 13

=> abcabc chia hết cho 13

24 tháng 10 2017

gọi số đó là abcabc

abcabc=abc.1000+abc

           =1001abc

           =13.77.abc

vậy abc.1001chia hết cho 13 hay abcabc chia hết cho 13