K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2024

Ta có: 

\(G=x^2+y^2+2x-4y+9\\ =\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+4\\ =\left(x+1\right)^2+\left(y-2\right)^2+4\ge4>0\forall x,y\\ H=2x^2+y^2+2xy+2x-4y+19\\ =\left(x^2+y^2+4-4x-4y+2xy\right)+\left(x^2+6x+9\right)+6\\ =\left(x+y-2\right)^2+\left(x+3\right)^2+6\ge6>0\forall x,y\)

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

23 tháng 9 2021

\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)

23 tháng 9 2021

E=(x2+2x+1)+14=(x+1)2+14

ta có (x+1)2 >=0 với mọi x

suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x

6 tháng 8 2018

Ta có: \(x^2-3x+7=x^2-3x+\frac{9}{4}+\frac{19}{4}\)

\(=\left(x^2-3x+\frac{9}{4}\right)+\frac{19}{4}=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\)

Vì: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\forall x\)

Hay : Biểu thức luôn dương với mọi giá trị của biến

=.= hok tốt!!

22 tháng 10 2021

\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)

Do đó B luôn dương với mọi x

19 tháng 10 2021

\(Sửa:F=4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)

10 tháng 9 2017

\(9x^2-6xy+2y^2+1\)

\(=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\) 

\(=\left(3x+y\right)^2+y^2+1\)  

ta có \(\left(3x+y\right)^2\ge0\forall x,y\)

\(y^2\ge0\forall y\)

\(\Rightarrow\left(3x+y\right)^2+y^2+1>0\forall x,y\)

1 tháng 9 2017

Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)

Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.

2 tháng 4 2021

Ta có \(b=x^2-2x+3=x^2-2x+1+2\)

\(=\left(x-1\right)^2+2>0\forall x\)

8 tháng 8 2018

giá trị âm nhá

A = 2x - x2 - 2 

= -(x2 - 2x + 2)

= -(x2 - 2x +  1 + 1)

= -(x2 - 2x + 1) - 1

= -(x - 1)2 - 1 

Vì (x - 1)2 \(\ge0\forall x\)

=> -(x - 1)2 \(\le0\forall x\)

Vậy A = -(x - 1)2 - 1 \(\le1< 0\forall x\)

8 tháng 8 2018

\(a=2x-x^2-2\)

\(a=-x^2+2x-2\)

\(a=-x^2+2x-1-1\)

\(a=-\left(x-1\right)^2-1\le-1\)

Dấu "=" xảy ra khi x = 1

Vậy x luôn âm