K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7

\(A=3+3^2+3^3+...+3^{99}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

`A =` \(\left(3+3^2+3^3\right).\left(1+3^3+...+3^{96}\right)\)

`A =` \(39.\left(1+3^3+...+3^{96}\right)\)

Mà `39 ⋮ 13`

`=> A  ⋮ 13` (đpcm)

6 tháng 10 2018

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3.\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)...+3^{97}.\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+...+3^{97}.13\)

\(A=13.\left(3+3^4+..+3^{97}\right)⋮13\)

Vậy...

6 tháng 10 2018

\(A=3+3^2+3^3+...+3^{99}\)

\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\)

\(A=3\cdot13+...+3^{97}\cdot13\)

\(A=13\cdot\left(3+...+3^{97}\right)⋮13\left(đpcm\right)\)

20 tháng 10 2017

A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^97+3^98+3^99)

A=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^97.(1+3+3^2)

A=3.13+3^4.13+...+3^97.13

A=13.(3+3^4+...+3^97) chia hết cho 13

20 tháng 10 2017

\(A=3+3^2+3^3+....+3^{99}\)

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(A=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{97}.\left(1+3+3^2\right)\)

\(A=3.13+3^4.13+....+3^{97}.13\)

\(A=13.\left(3+3^4+....+3^{97}\right)\)

\(\Leftrightarrow A⋮13\)

Vậy: \(A⋮13\)

Nhớ k cho mình nhé! Thank you!!!

7 tháng 10 2019

1)

a)\(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

2)

a) Có: \(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\)

\(\left\{{}\begin{matrix}99\overline{ab}⋮99\\\left(\overline{ab}+\overline{cd}\right)⋮99\end{matrix}\right.\)

\(\Rightarrow\overline{abcd}⋮99\)

b) Có: \(\overline{abcdef}=1000\overline{abc}+\overline{def}=999\overline{abc}+\left(\overline{abc}+\overline{def}\right)=37\cdot27\cdot\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)

\(\left\{{}\begin{matrix}37\cdot27\cdot\overline{abc}⋮37\\\left(\overline{abc}+\overline{def}\right)⋮37\end{matrix}\right.\)

\(\Rightarrow\overline{abcdef}⋮37\)

3)

a) Có: \(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\\ A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\\ A=13+3^3\cdot13+...+3^{1998}\cdot13\\ A=13\left(1+3^3+...+3^{1998}\right)⋮13\)

b) Có: \(B=1+4+4^2+...+4^{2010}+4^{2011}+4^{2012}\\ B=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\\ B=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\\ B=21+4^3\cdot21+...+4^{2010}\cdot21\\ B=21\left(1+4^3+...+4^{2010}\right)⋮21\)

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
12 tháng 7 2018

ai tích mình mình tích lại cho

1 tháng 3 2020

k di

e he he

10 tháng 11 2019

a)Ta có:A=3+32+33+...+318

            =(3+32)+(33+34)+...+(317+318)

            =3(1+3)+33(1+3)+...+317(1+3)

            =3.4+33.4+...+317.4

Vì 4\(⋮\)4 nên 3.4+33.4+...+317.4\(⋮\)4

hay A\(⋮\)4

Ta có:A=3+32+33+...+318

            =(3+32+33)+(34+35+36)+...+(316+317+318)

            =3(1+3+32)+34(1+3+32)+...+316(1+3+32)

            =3.13+34.13+...+316.13

Vì 13\(⋮\)13 nên 3.13+34.13+...+316.13\(⋮\)13

hay A\(⋮\)13

Vậy A chia hết cho 4, 13.

10 tháng 11 2019

A=3+32+33+...+318

A=(3+32)+(33+34)+...+(317+318)

A=3(1+3)+33(1+3)+...+317(1+3)

A=3x4+33x4+...+317x4

A=4x(1+33+...+317) chia hết cho 4