cano đi từ a về b hết 3h và đi từ b đến a hết 4h.vt dòng nước 4km/h.quãng đường ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian ca nô đi là x ( h ) ( x > 0 )
Quãng đường đi được là: \(\left(30+3\right).x\left(km\right)\)
Thời gian của ca nô là \(x+\frac{2}{3}\left(h\right)\)
Quãng đường của ca nô là \(\left(30-3\right)\left(x+\frac{2}{3}\right)\)
\(\Rightarrow33x=27x+18\)
\(\Rightarrow6x=18\)
\(\Rightarrow x=3\left(h\right)\)
Suy ra quãng đường AB dài là 33.3 = 99 ( km )
Vậy quãng đường AB dài 99 ( km )
Lời giải:
Đổi $20'=\frac{1}{3}$ h
Gọi vận tốc riêng của cano là $a$ (km/h). ĐK $a>6$.
Vận tốc xuôi dòng: $a+6$ km/h
Vận tốc ngược dòng: $a-6$ km/h
Theo bài ra ta có:
$\frac{AB}{a-6}-\frac{AB}{a+6}=\frac{1}{3}$$\Leftrightarrow \frac{60}{a-6}-\frac{60}{a+6}=\frac{1}{3}$
$\Leftrightarrow a^2-36=2160$
$\Leftrightarrow a^2=2196$
$\Rightarrow a=6\sqrt{61}$ (km/h)
Đặt x là vận tốc của xe (km/h, x>0) ; t là thời gian dự định đến b của ô tô
Quãng đường ab dài là :
sab=x.t(1)
Nếu tăng thêm 10 km/h thì ô tô đến sớm hơn 2 h:
sab=(x+10)(t-2) (2)
Nếu giảm vận tốc 10 km/h thì tới b chậm hơn 3h:
sab=(x-10)(t-3) (3)
(1),(2) => (x+10)(t-2)=(x-10)(t+3)
(2)/(1) <=> \(\frac{\left(x+10\right).\left(t-2\right)}{x.t}=1\Leftrightarrow\frac{x+10}{x}=\frac{t}{t-2}\Leftrightarrow\frac{10}{x}=\frac{2}{t-2}\)
\(\Leftrightarrow5\left(t-2\right)=x\)(*)
Thay (*) vào (2,3) rồi (2)/(3)
\(\Leftrightarrow\left[5\left(t-2\right)+10\right]\left(t-2\right)=\left[5\left(t-2\right)-10\right]\left(t+3\right)\)
\(\Leftrightarrow t=12\left(h\right)\)
\(\Leftrightarrow s_{ab}=5\left(12-2\right).12=600\left(km\right)\)
Vận tốc thật của cano là:
(3x4+4x4):(4-3)=28(km/h)
Độ dài quãng đường AB là: 3x(28+4)=3x32=96(km)