K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7

`(-x+1)^3`

`= (1-x)^3`

`= 1^3 + 3 . 1^2 . (-x) + 3 . 1 . (-x)^2 + (-x)^3`

`= 1 - 3x + 3x^2 - x^3`

19 tháng 1 2022

\(\left(x-1\right)^3=x^3-3x^2+3x-1\)

19 tháng 1 2022

=x3-3x2+3x-1

14 tháng 10 2018

\(\left(2x+1\right)\left(x+3\right)+\left(x+1\right)^2\left(x+2\right)+\left(x+5\right)\left(x+1\right)\)

\(=2x^2+6x+x+3+x^3+2x^2+x+2x^2+4x+2+x^2+x+5x+5\)

\(=x^3+7x^2+18x+10\)

đúng ko nhỉ?

14 tháng 10 2018

tham khảo : KHAI TRIỂN RÚT GỌN ĐA THỨC BẰNG CASIO (1LINK DUY NHẤT) - YouTube

5 tháng 3 2023

loading...  

15 tháng 9 2017

Lời giải.

Cách 1:

Trong khai triển trên ta thấy bậc của x trong 3 số hạng đầu nhỏ hơn 8, bậc của x trong 4 số hạng cuối lớn hơn 8.

Do đó x8 chỉ có trong số hạng thứ tư, thứ năm với hệ số tương ứng là:.

Vậy hệ số cuả x8 trong khai triển đa thức  là: 

Cách 2: Ta có: 

với 0 k n 8. 

Số hạng chứa x8 ứng với 2n + k = 8 k = 8 -2n là một số chẵn.

Thử trực tiếp ta được k = 0, n =4 và k = 2, n = 3.

Vậy hệ số của x8 là 

 Chọn C.

21 tháng 12 2020

đáp án =-1


 

NV
5 tháng 3 2022

\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)

\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)

Số hạng chứa \(x^{13}\) thỏa mãn:

\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\) 

\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)

\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)

Hệ số....

AH
Akai Haruma
Giáo viên
30 tháng 12 2022

Lời giải:
\(P(x)=2x(1-x)^{15}=2x\sum \limits_{k=0}^{15}C^k_{15}(-x)^k=2\sum \limits_{k=0}^{15}C^k_{15}(-1)^kx^{k+1}\)

Số hạng chứa $x^{12}$

$\Rightarrow k+1=12\Rightarrow k=11$

Vậy số hạng chứa $x^{12}$ là:

$2C^{11}_{15}(-1)^{11}x^{12}=-2730$

30 tháng 12 2022

Ngay (-1)^k * x^(k+1) 

Em chưa hiểu lắm ạ

 

3 tháng 12 2019

Ta thấy rằng : P ( x ) là một đa thức bậc 3 và có hệ số cao nhất bằng 3 . Do đó ta viết P ( x ) dưới dạng chính tắc như sau :

\(P\left(x\right)=3x^3+Bx^2+Cx+D\) 

\(\Rightarrow\left(x-1\right)\left(x-3\right)\left(3x+4\right)+5x-2=3x^3+Bx^2+Cx+D\)

+) Với x =0 ta có D = 10

+) Với x = 1 ta có : 3 = 3 + B + C + 10

=> B + C = -10 ( 1 )

+) Với x = -1 ta có : 1 = -3 + B - C = 10

=> B -C = 6 ( 2 )

Từ (1) và (2) suy ra B = -8 ; C= -2

Vậy \(P\left(x\right)=3x^3-8x^2-2x+10\)

30 tháng 11 2019

\(A=\left(2x\right)^4+4.\left(2x\right)^3.1+6\left(2x\right)^2.1+4.\left(2x\right).1+1+3^5+5.3^4.x+10.3^3.x^2+10.3^2.x^3+5.3.x^4+x^5\)

\(A=16x^4+32x^3+24x^2+8x+1+243+405x+270x^2+90x^3+15x^4+x^5\)

\(A=x^5+31x^4+122x^3+294x^2+413x+244\)