Cho A(x) +B(x) = 6x^4-3x^2-5 và A(x) - B(x) =4x^4-6x3 + 7x^2 + 8x - 9 . Tìm đa thức A(x) và B(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2+x_3=9\\x_1x_2+x_2x_3+x_3x_1=a\\x_1x_2x_3=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-x_3\\6+x_3\left(x_1+x_2\right)=a\\x_3=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-x_3\\6+4\left(9-x_3\right)=a\\x_3=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-4\\6+4\left(9-4\right)=a\\x_3=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2+=9-x_3\\24=a\\x_3=4\end{matrix}\right.\)
Vậy \(a=24\)
Em thấy đáp án của bài toán này là a=26 ạ, thầy xem lại giúp em với ạ
Em cám ơn nhiều lắm ạ
Gọi thương của phép chia f(x) cho x-2 là A(x); cho x-3 là B(x)
Ta có: f(x) = (x-2).A(x) + 5
f(x) = (x-3).B(x) + 7
Ap dụng định lý Bơ-du ta có:
f(2) = 5
f(3) = 7
Gọi dư của phép chia f(x) cho (x-2)(x-3) là ax+b
Ta có:
f(x) = (x-2)(x-3).(x2-1) + ax + b
\(\Rightarrow\)f(2) = 2a + b = 5
f(3) = 3a + b =7
\(\Rightarrow\)a = 2; b = 1
vậy f(x) = (x-2)(x-3)(x2 - 1) + 2x + 1
= x4 - 5x3 + 5x2 + 7x - 5
cho mình hỏi tại sao dư của f(x) cho (x-2)(x-3) lại phải là ax+b mà không phải cái khác vậy bạn
Không em, phải thỏa cả ĐKXĐ ban đầu chứ
Do đó \(x=-2\) \(\Rightarrow A=-1\) mới là GTNN của A
a) Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) Ta có:
A(x)= x^15-(x+1)x^14+(x+1)x^13-(x+1)x^12+...+(x+1)x^3-(X+1)^2+(x+1)x-15
=x^15-x^15-x^14+x^14+x^13-x^13-...+X^4+x^3-X^3-x^2+x^2-x-15
=x-15
=> A(14)=14-15=-1
Vậy A(14)=-1
b) Với x=10 ta có
0.f(-4)=-2.f(0)
=>0=2.f(0) => f(0)=0
=> Đa thức f(x) có 1 nghiệm là 0 (1)
Với x =2 tao có: 2.f(-2)=0.(f) (2)
Từ (1) và (2)
=> Đa thức này có 2 nghiệm
k mình nha
a) Ta có: \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)
\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x^2-3x-7\right)}{4x-7}\)
\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x-7\right)\left(x+1\right)}{4x-7}\)
\(\Leftrightarrow A=\left(2x+3\right)\left(x+1\right)\)
\(\Leftrightarrow A=2x^2+5x+3\)
b) Ta có: \(\dfrac{1}{B}=\dfrac{a+b}{a^3+b^3}\)
\(\Leftrightarrow\dfrac{1}{B}=\dfrac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{1}{a^2-ab+b^2}\)
hay \(B=a^2-ab+b^2\)
`A(x) + B(x) = 6x^4 - 3x^2 - 5`
`A(x) - B(x) = 4x^4 - 6x^3 + 7x^2 + 8x - 9`
Áp dụng bài toán tổng hiệu ta có:
`A(x) = [(6x^4 - 3x^2 - 5) + (4x^4 - 6x^3 + 7x^2 + 8x - 9)] : 2`
`= (6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9) : 2`
`= (10x^4 - 6x^3 + 4x^2 + 8x - 14) : 2`
`= 5x^4 - 3x^3 + 2x^2 + 4x - 7`
`B(x) = (6x^4 - 3x^2 - 5) - (5x^4 - 3x^3 + 2x^2 + 4x - 7)`
`= 6x^4 - 3x^2 - 5 - 5x^4 + 3x^3 - 2x^2 - 4x + 7`
`= x^4 + 3x^3 - 5x^2 - 4x + 2`
Vậy ....
\(2A\left(x\right)=\left(6x^4-3x^2-5\right)+\left(4x^4-6x^3+7x^2+8x-9\right)\\ =\left(6x^4+4x^4\right)-6x^3+\left(-3x^2+7x^2\right)+8x+\left(-5-9\right)\\ =10x^4-6x^3+4x^2+8x-14\\ =>A\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(=>B\left(x\right)=\left(6x^4-3x^2-5\right)-A\left(x\right)\\ =\left(6x^4-3x^2-5\right)-\left(5x^4-3x^3+2x^2+4x-7\right)\\ =\left(6x^4-5x^4\right)+3x^3+\left(-3x^2-2x^2\right)-4x+\left(-5+7\right)\\ =x^4+3x^3-5x^2-4x+2\)