K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2024

\(x\left(x-4\right)+5=x^2-4x+5\\ =x^2-4x+4+1\\ =x^2-2.2x+2^2+1\\ =\left(x-2\right)^2+1\)

Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1>0\)

\(\Leftrightarrow x\left(x-4\right)+5>0\forall x\)

30 tháng 7 2024

Ta có:

\(x\left(x-4\right)+5\\ =x^2-4x+5\\ =\left(x^2-4x+4\right)+1\\ =\left(x-2\right)^2+1\)

Ta có: `(x-2)^2>=0` với mọi x 

`=>(x-2)^2+1>=1>0` với mọi x 

Hay `x(x-4)+5` luôn lớn hơn không 

4 tháng 1 2023

a) `P=x^2-4x+5`

`=(x^2-4x+4)+1`

`=(x^2-2.x.2+2^2)+1`

`=(x-2)^2+1`

Vì `(x-2)^2 >=0 ` nên `(x-2)^2+1 >=1 >0` với mọi `x`

`<=> (x-2)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

``

b) `P=x^2-2x+2`

`=(x^2-2x+1)+1`

`=(x^2-2.x.1+1^2)+1`

`=(x-1)^2+1`

Vì `(x-1)^2 >=0` với mọi `x`

`=>(x-1)^2+1 >=1 >0` với mọi `x`

`<=> (x-1)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

4 tháng 1 2023

\(a,P=x^2-4x+5\)

\(=x^2-2.x.2+4+1\)

\(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-2\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

_____________________________________

\(b,P=x^2-2x+2\)

\(=x^2-2.x.1+1+1\)

\(=\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

11 tháng 11 2015

Tick cho tau rồi tau làm cho ko thiếu 1 chữ

 

11 tháng 11 2015

làm nhanh giùm mình các bạn ơi

20 tháng 8 2015

a2 chỉ lớn hơn a khi |a| lớn hơn hoặc bằng 2 hoặc vs th -1x(-1)>-1

bằng thì a=0,1 ;

25 tháng 6 2021

a) \(a^2-6a+10=\left(a^2-6a+9\right)+1=\left(a-3\right)^2+1\ge1\left(\forall a\right)\)

Dấu "=" xảy ra khi a = 3

b) \(4a^4-4a^3+a^2=a^2\left(4a^2-4a+1\right)=\left[a\left(2a-1\right)\right]^2\ge0\left(\forall a\right)\)

Dấu "=" xảy ra khi: \(\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

c) \(x^3+y^3=\frac{1}{3}\left(3x^3+3y^3\right)\)

\(=\frac{1}{3}\left[\left(x^3+x^3+y^3\right)+\left(x^3+y^3+y^3\right)\right]\ge\frac{1}{3}\left(3x^2y+3xy^2\right)=x^2y+xy^2\) (Cauchy)

Dấu "=" xảy ra khi: x = y

18 tháng 5 2022

Gọi 5 số đó là a; b; c; d; e

Giả sử a<b<c<d<e

\(\Rightarrow d-b\ge2;e-c\ge2\)

Theo đề bài 

\(a+b+c>d+e\)

\(\Rightarrow a>b-d+c-e\ge4\Rightarrow a>5\)

 

Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com f. |x| - (-2) = (-1) g. 5 - |x + 1| = 30 h. |x - 1| - x + 1 = 0 i. |2 - x| + 2 = x j. |x + 1| = |x - 2| k. 5 - |2x - 1| = (-7) l. |x + 2| 5 m. |x - 1| > 2 n. |x| = |23| và x < 0 o. |x| = |-2| và x > 0 p. (-1) + 3 + (-5) + 7 + … + x = 600 q. 2 + (-4) + 6 + (-8) + … + (-x) = - 2000 Bài 2: Tìm x Z sao cho: a. (x + 1).(3 - x) =...
Đọc tiếp
  1. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com f. |x| - (-2) = (-1) g. 5 - |x + 1| = 30 h. |x - 1| - x + 1 = 0 i. |2 - x| + 2 = x j. |x + 1| = |x - 2| k. 5 - |2x - 1| = (-7) l. |x + 2| 5 m. |x - 1| > 2 n. |x| = |23| và x < 0 o. |x| = |-2| và x > 0 p. (-1) + 3 + (-5) + 7 + … + x = 600 q. 2 + (-4) + 6 + (-8) + … + (-x) = - 2000 Bài 2: Tìm x Z sao cho: a. (x + 1).(3 - x) = 0 b. (x - 2).(2x - 1) = 0 c. (3x + 9).(1 – 3x) = 0 d. (x2 + 1).(81 – x2 ) = 0 e. (x - 5)5 = 32 f. (2 - x)4 = 81 g. (31 – 2x)3 = -27 h. (x - 2).(7 - x) > 0 i. |x - 7| 3 Bài 3: Tìm x, y Z sao cho: a. |x + 25| + |-y + 5| = 0 b. |x - 1| + |x – y + 5| 0 c. |6 – 2x| + |x - 13| = 0 d. |x| + |y + 1| = 0 e. |x| + |y| = 2 f. |x| + |y| = 1 g. x.y = - 28 h. (2x - 1).(4y + 2) = - 42
  2. 3. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com i. x + xy + y = 9 j. xy – 2x – 3y = 5 k. (5x + 1).(y - 1) = 4 l. 5xy – 5x + y = 5  DẠNG 3: BÀI TOÁN LIÊN QUAN GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT (MAX - MIN) Bài 1: Tìm x Z sao cho: a. x + 23 là số nguyên âm lớn nhất. b. x + 99 là số nguyên âm nhỏ nhất có hai chữ số c. 9 |x - 3| < 11 d. Tìm giá trị nhỏ nhất và lớn nhất của x sao cho: 1986 < |x + 2| < 2012 Bài 2: Tìm các giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau (x, y Z) a. A = |x - 3| + 1 b. B = |6 – 2x| - 5 c. C = 3 - |x + 1| d. D = - 100 - |7 - x| e. E = - (x + 1)2 - |2 - y| + 11 f. F = (x - 1)2 + |2y + 2| - 3 g. G = (x + 5)2 + (2y - 6)2 + 1 h. H = - 3 – (2 - x)2 – (3- y)2 i. I = 5 - |2x + 6| - |7 - y|  DẠNG 4: BỘI VÀ ƯỚC TRONG SỐ NGUYÊN Tìm x Z sao cho: a. (x – 4) (x + 1) b. (2x + 5) (x - 1) c. (4x + 1) (2x + 2) d. (3x + 2) (2x - 1)
  3. 4. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com e. (x2 – 2x + 3) (x - 1) f. (3x – 1) (x - 4) g. (x2 + 3x + 9) (x + 3) h. (2x2 – 10x + 5) (x - 5)  DẠNG 5: MỘT SỐ BÀI TOÁN CHỨNG MINH Bài 1: Cho A = a – b + c; B = -a + b – c, với a, b, c Z. Chứng minh rằng: A và B là hai số đối nhau. Bài 2: Chứng minh rằng: (a - b) – (b + c) + (c - a) – (a – b - c) = - (a + b - c). Bài 3: Cho a, b, c N và a 0. Chứng tỏ rằng biểu thức P luôn âm, biết: P = a.(b - a) – b(a - c) – bc. Bài 4: Chứng minh các đẳng thức sau: a. (a - b) + (c - d) – (a - c) = - (b + d) b. (a - b) – (c - d) + (b + c) = a + d Bài 5: Cho x, y thuộc số nguyên. Chứng minh rằng: 6x + 11y là bội của 31 khi và chỉ khi x + 7y là bội của 31. Bài 6: Cho x, y thuộc số nguyên. Chứng minh rằng: 5x + 47y là bội của 17 khi và chỉ khi x + 6y là bội của 17. Bài 7: Chứng minh rằng với mọi a thuộc số nguyên, ta có: a. (a - 1).(a + 2) + 12 không là bội của 9. b. 49 không là ước của (a + 2)(a + 9) + 21. 
2
2 tháng 4 2017

cái gì thế này???????????????????????????????????

31 tháng 10 2021

mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý

5 tháng 9 2017

\(x^2y+xy-2x^2-3x+4=0\)

\(x^2\left(y-2\right)+x\left(y-2\right)-x+4=0\)

\(x\left(y-2\right)\left(x+1\right)-\left(x+1\right)+5=0\)

\(\left(x+1\right)\left[x\left(y-2\right)-1\right]+5=0\)

26 tháng 4 2017

 \(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)

 \(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)    [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]

Đặt     \(x^2-7x+9=y\) ta được :

 \(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)

 \(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)

 \(\Leftrightarrow y^2-9+9\ge0\)

\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)

tk cho mk nka !!!

26 tháng 4 2017

khó lắm !