Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A luôn chia hết cho 3
A = (3 + 32) + (33 + 34) + ...+ (31997 + 31998) = 3.(1 + 3) + 33.(1 + 3) + ...+ 31997.(1 + 3) = 4.(3 + 33 + ...+ 31997)
=> A chia hết cho 4 ; A chia hết cho 3 => A chia hết cho 12
A = (3 + 32 + 33) + ...+ (31996 + 31997 + 31998) = 3.(1 + 3 + 32) + ...+ 31996.(1 + 3+ 32) = 13.(3 + 34 + ...+ 31996)
=> A chia hết cho 13. A chia hết cho 3 => A chia hết cho 39
b) A = (3 + 32 + 33 + 34) + ..+ (3997 + 3998 + 3999 + 31000)
A = 3.(1 + 3 + 32 + 33) + ...+ 3997.(1 + 3 + 32 + 33) = 40.(3 + ...+ 3997)
=> A chia hết cho 40 ; A chia hết cho 3
=> A chia hết cho 40.3 = 120
Vậy...
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)
\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)
\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
Ta có: \(A=3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=3.40+3^5.40+...+3^{2009}.40\)
\(=120+3^4.120+...+3^{2008}.120\)
\(=120\left(1+3^4+...+3^{2008}\right)\)
Vì \(120⋮120\) nên \(120\left(1+3^4+...+3^{2008}\right)⋮120\)
hay \(A⋮120\) (đpcm)
Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)\)
a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)
=40(3+...+3^129) chia hết cho 40
b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)
=39(1+...+3^129) chia hết cho 39
c: A chia hết cho 40
A chia hết cho 3
=>A chia hết cho BCNN(40;3)=120
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)
\(\Rightarrow A=6+...+2^{118}.6\)
\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)
b) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{117}.14\)
\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)
A= 3 + 32 + 33 + ... + 3100
A= (3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ... + (397 + 398 + 399 + 3100)
A= 3.(1 + 3 + 32 + 33) + 35 . (1 + 3 + 32 + 33) + ... + 397 . (1 + 3 + 32 + 33)
A= 3 . 40 + 35 . 40 + ... + 397 . 40
A= (3 + 35 + 39 + ... + 397) . 40
Mà 120 ⋮ 40
=> A= (3 + 35 + 39 + ... + 397) ⋮ 120
=> A ⋮ 120
Vậy A ⋮ 120