K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7

\(C=\left(3x+2\right)^2-\left(3x+2\right)\left(3x-2\right)-6x\)

\(=9x^2+12x+4-\left(9x^2-4\right)-6x=6x+8\)

Vậy bth phụ thuộc biến x, ko có đpcm 

27 tháng 12 2021

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x=0\)

19 tháng 10 2017

(3x+5)^2+(3x-5)^2-2*(3x+5)*(3x-5)

27 tháng 11 2017

\(=2x^2\left(x^2-3x\right)-6x+5+3x\left(2x^2+2\right)-2-2x^4\)

  \(=2x^4-6x^3-6x+5+6x^3+6x-2-2x^4\)

\(=3\)

Vậy gt của bt trên ko phụ thuộc vào gt của biến

11 tháng 7 2018

Rút gọn B = 35.

5 tháng 7 2017

a) 5x^2-(2x+1)(x-2)-x(3x+3)+7
= 5x^2-2x^2+4x-x+2-3x^2-3x+7
= 9
Suy ra  5x^2-(2x+1)(x-2)-x(3x+3)+7 ko phụ thuộc vào giá trị của biến x
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
c) (5x-2)(x+1)-(x-3)(5x+1)-17(x-2)
= 5x^2+5x-2x-2-5x^2-x-15x-3-17x+2
= -3
Suy ra (5x-2)(x+1)-(x-3)(5x+1)-17(x-2) ko phụ thuộc vào giá trị của biến x
d) (4x-5)(x+2)-(x+5)(x-3)-3x^2-x
= 4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x
=5
Suy ra  (4x-5)(x+2)-(x+5)(x-3)-3x^2-x ko phụ thuộc vào giá trị của biến x
k mik nha 
Chúc bạn học giỏi 

5 tháng 7 2017

a) =5x2-2x2+3x+2-3x2-3x+7

    =2+7=9

`@` `\text {Ans}`

`\downarrow`

`2,`

`(x^3 - 2x^2 + 2) - (3x^3 + 4x^2 - 3) + (2x^3 + 6x^2)`

`= x^3 - 2x^2 + 2 - 3x^3 - 4x^2 + 3 + 2x^3 + 6x^2`

`= (x^3 - 3x^3 + 2x^3) + (-2x^2 - 4x^2 + 6x^2) + (2+3)`

`= 0 + 0 + 5`

`= 5`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

1 tháng 7 2023

Bn phá ngoặc ra rồi tính như bình thường, biểu thức = 5

=> biểu thức không phụ thuộc vào giá trị biến ( đpcm )

25 tháng 7 2021

\(\left(3x+5\right)^2+\left(6x+10\right)\left(2-3x\right)+\left(2-3x\right)^2\)

\(=9x^2+30x+25+12x-18x^2+20-30x+4-12x+9x^2\)

\(=49\)

Vậy biểu thức trên không phụ thuộc vào giá trị của biến.

31 tháng 8 2021

a )\(2x\left(xy-3\right)+3xy\left(x+1-y\right)+3x\left(y^2-1\right)=2x^2y-6x+3x^2y+3xy-3xy^2+3xy^2-3x=5x^2y-9x+3xy\)

=> Phụ thuộc vào giá trị của biến

b) \(\left(x+2y\right)\left(x-2y\right)-x\left(x+4y^2\right)+5=x^2-4y^2-x^2-4xy^2+5=-4y^2-4xy^2+5\)

=> Phụ thuộc vào giá trị của biến

c) \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)=27x^3+8-9x^2+4=27x^3-9x^2+12\)

=> Phụ thuộc vào giá trị của biến

a: Ta có: \(2x\left(xy-3\right)+3xy\left(x-y+1\right)+3x\left(y^2-1\right)\)

\(=2x^2y-6x+3x^2y-3xy^2+3xy+3xy^2-3x\)

\(=5x^2y+3xy-9x\)

c: Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)\)

\(=27x^3+8-9x^2+4\)

\(=27x^3-9x^2+12\)