K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 10:

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\)

=>\(\left\{{}\begin{matrix}c=dk\\b=ck=dk\cdot k=dk^2\\a=bk=dk^2\cdot k=dk^3\end{matrix}\right.\)

a:

\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\left(\dfrac{dk^3+dk^2+dk}{dk^2+dk+d}\right)^3=\left(\dfrac{dk\left(k^2+k+1\right)}{d\left(k^2+k+1\right)}\right)^3=k^3\)

\(\dfrac{a}{d}=\dfrac{dk^3}{d}=k^3\)

Do đó: \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

b: Sửa đề: Chứng minh \(\dfrac{a^3+c^3+b^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)

 \(\dfrac{a^3+c^3+b^3}{c^3+b^3+d^3}=\dfrac{\left(dk^3\right)^3+\left(dk\right)^3+\left(dk^2\right)^3}{\left(dk\right)^3+\left(dk^2\right)^3+d^3}\)

\(=\dfrac{d^3k^9+d^3k^3+d^3k^6}{d^3k^3+d^3k^6+d^3}=\dfrac{d^3\cdot k^3\left(k^6+1+k^3\right)}{d^3\cdot\left(k^3+k^6+1\right)}=k^3\)

\(=\dfrac{dk^3}{d}=\dfrac{a}{d}\)

Bài 14:

x+y+z=0

=>x+y=-z; x+z=-y; y+z=-x

\(A=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\cdot\left(-x\right)\cdot\left(-y\right)\)

=-xyz

=-2

28 tháng 6 2017

Giải phương trình,4căn2x + 10căn8x - 9căn18x + 20 = -10,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

k mình nha

28 tháng 6 2017

lầy thật

16 tháng 7 2017

a,

\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\\ C>0+0+0+...+0=0\left(1\right)\)

\(C=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}\)

Ta có:

\(\dfrac{1}{11}< \dfrac{1}{10}\\ \dfrac{1}{12}< \dfrac{1}{10}\\ \dfrac{1}{13}< \dfrac{1}{10}\\ ...\\ \dfrac{1}{19}< \dfrac{1}{10}\)

\(\Rightarrow C< \dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\left(9\text{ phân số }\dfrac{1}{10}\right)\\ C< 9\cdot\dfrac{1}{10}\\ C< \dfrac{9}{10}< 1\left(2\right)\)

Từ (1) và (2) ta có:

\(0< C< 1\)

Rõ ràng \(0\)\(1\) là hai số nguyên liên tiếp nên \(C\) không phải là số nguyên

Vậy \(C\) không phải là số nguyên (đpcm)

b,

\(D=2\left[\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{n\left(n+2\right)}\right]\\ D=\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{n\left(n+2\right)}\\ D>0+0+0+...+0=0\left(1\right)\)

Ta có:

\(D=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{n\cdot\left(n+2\right)}\\ D=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+2}\\ D=\dfrac{1}{1}-\dfrac{1}{n+2}\\ D=1-\dfrac{1}{n+2}< 1\left(\text{Vì }n>0\right)\left(2\right)\)

Từ (1) và (2) ta có:

\(0< D< 1\)

Rõ ràng \(0\)\(1\) là hai số nguyên liên tiếp nên \(D\) không phải là số nguyên

Vậy \(D\) không phải là số nguyên (đpcm)

c,

\(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\\ E=\dfrac{2}{6}+\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{2}{9}+\dfrac{2}{10}+\dfrac{2}{11}\)

Ta có:

\(\dfrac{2}{6}>\dfrac{2}{12}\\ \dfrac{2}{7}>\dfrac{2}{12}\\ \dfrac{2}{8}>\dfrac{2}{12}\\ ...\\ \dfrac{2}{11}>\dfrac{2}{12}\)

\(\Rightarrow E>\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}+\dfrac{2}{12}\\ E>6\cdot\dfrac{2}{12}\\ E>\dfrac{12}{12}=1\left(1\right)\)

Mặt khác ta có:

\(\dfrac{2}{6}>\dfrac{2}{7}\\ \dfrac{2}{6}>\dfrac{2}{8}\\ \dfrac{2}{6}>\dfrac{2}{9}\\ ...\\ \dfrac{2}{6}>\dfrac{2}{11}\)

\(\Rightarrow E< \dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}+\dfrac{2}{6}\\ E< 6\cdot\dfrac{2}{6}\\ E< 2\left(2\right)\)

Từ (1) và (2) ta có:

\(1< E< 2\)

Rõ ràng \(1\)\(2\) là hai số nguyên liên tiếp nên \(E\) không phải là số nguyên

Vậy \(E\) không phải là số nguyên (đpcm)

16 tháng 7 2017

c) \(E=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)

\(=\dfrac{2}{6}+\dfrac{2}{8}+\dfrac{2}{10}+\dfrac{2}{7}+\dfrac{2}{9}+\dfrac{2}{11}\)

\(=2\left(\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}\right)\)

Ta có: \(\dfrac{1}{6}>\dfrac{1}{7}>\dfrac{1}{8}>\dfrac{1}{9}>\dfrac{1}{10}>\dfrac{1}{11}\)

\(\Rightarrow E>2\left(\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}\right)=2\left(\dfrac{1}{11}.6\right)=2\cdot\dfrac{6}{11}=\dfrac{12}{11}>1\) (1)

\(E< 2\left(\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{6}\right)=2\left(\dfrac{1}{6}.6\right)=2.1=2\) (2)

Từ (1) và (2) suy ra 1 < E < 2 suy ra E không phải là số nguyên

bài này dễ mà bạn

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

15 tháng 2 2016

Bàu 68:

-Các t/c đó đc suy ra từ các định lý:

+a,b)định lý:Tổng ba góc của một tam giác bằng 180°

+c)đl:Trong một tam giác cân,hai góc ở đáy = nhau

+d)đl:Nếu một tam giác có hai góc =nhau thì tam giác đó là tam giác cân

30 tháng 12 2021

HÙGHJUJNHJRJIJKJHJUIRGJUIJUIGJUIGJUIFKJIOJUITJUIKIOUJRJUIGJUTRGJUI6JUHJUIHJYUIJUIGJUIJUIRIGIJUIERGJU6JIGJUIJUITGHJUTJUIHITGJUIYIJH

27 tháng 11 2015

bài 22

Xét ΔDAE và ΔBOC có:

AD = OB (gt)

DE = BC (gt)

AE = OC (gt)

Nên ∆DAE= ∆BOC (c.c.c)

suy ra  ∠DAE = ∠BOC(hai góc tương tứng)

vậy ∠DAE = ∠xOy.

bài 23

∆BAC và ∆BAD có: AC= AD (gt)

BC = BD(gt)

AB cạnh chung.

Nên ∆BAC= ∆BAD(c.c.c)

Suy ra ∠BAC = ∠BAD (góc tương ứng)

Vậy AB là tia phân giác của góc CAD.

nhớ tick nha!!

11 tháng 7 2017

Giải hệ phương trình,(x + 2)(x - y + 1) = 2 và 3x^2 - 3xy + x + 2y = 4,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

AI XEM RỒI NHỚ CHẤM ĐIỂM

11 tháng 7 2017

Trình bày xấu chưa từng thấy

21 tháng 6 2017

Bài 6:

A P M N Q 33 o

a) \(\widehat{MAP}=\widehat{NAQ}\) (hai góc đối đỉnh)

\(\widehat{MAP}=33^o\)

Vậy \(\widehat{NAQ}=33^o\).

b) Ta có: \(\widehat{MAP}+\widehat{MAQ}=180^o\) (hai góc kề bù)

\(\widehat{MAP}=33^o\)

Nên \(\widehat{MAQ}=180^o-\widehat{MAP}=180^o-33^o=147^o\)

Vậy \(\widehat{MAQ}=147^o.\)

c) Các cặp góc đối đỉnh:

\(\widehat{MAP}\)\(\widehat{NAQ}\)

\(\widehat{NAP}\)\(\widehat{MAQ}\).

d) Các cặp góc bù nhau:

\(\widehat{MAP}\)\(\widehat{NAP}\)

\(\widehat{NAP}\)\(\widehat{NAQ}\)

\(\widehat{NAQ}\)\(\widehat{MAQ}\)

\(\widehat{MAQ}\)\(\widehat{MAP}\).

29 tháng 11 2016

4.4

TH1: Nếu x<1 thì ta có: 

1 - x + 4 - x =3x

5-2x=3x

5=5x

=> x=1 ( k thỏa mãn)

TH2: 1<x<4 thì ta có :

x-1=4x=3x

3=3x

=> x=1 ( thỏa mãn)

TH3:Nếu x >4 thì ta có:

x-1+x-4=3x

2x-5=3x

2x-3x=5

-x=5

=> x=-5 ( k thỏa mãn)

Vậy x=1

22 tháng 3 2016

co mk nè chi vx

22 tháng 3 2016

đăng lên đi

14 tháng 6 2016

Bạn ghi hẳn đề bài ra nha

14 tháng 6 2016

Sử dụng tính chất : nếu a , b , c \(\in\) Z và a < b thì a + c < b - c . Từ đó

=> \(\frac{a}{m}< \frac{a+b}{2m}\) ( chia 2 vế cho m > 0 )

Vậy x < z               ( 1 )

- Ta chứng minh z < y hay \(\frac{a+b}{2m}< \frac{b}{m}\)

Ta có : am < bm => am + bm < bm + bm ( cộng hai vế với bm )

                             => ( a + b )m < 2bm

                             => a + b < 2b ( chia 2 vế cho m )

                             => \(\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}\) ( chia 2 vế cho 2m )

Hay z < y        ( 2 )

Từ ( 1 ) và ( 2 ) => x < z < y

* Nhận xét : từ kết quả trên ta rút ra kết luận : trên trục số , giữa 2 điểm hữu tỉ khác nhau bất kì bao giờ cũng có ít nhất một điểm hữu tỉ nữa và do đó có vô số điểm hữu tỉ . Ta bảo tập hợp Q là tập trù mật.