K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

\(\widehat{ICB}+\widehat{NCB}=\widehat{NCI}=90^0\)

Do đó: \(\widehat{ICA}=\widehat{NCB}\)

Ta có: \(\widehat{CAI}+\widehat{CBI}=90^0\)(ΔCBA vuông tại C)

\(\widehat{CBI}+\widehat{CBN}=\widehat{NBI}=90^0\)

Do đó: \(\widehat{CAI}=\widehat{CBN}\)

Xét ΔCAI và ΔCBN có

\(\widehat{CAI}=\widehat{CBN}\)

\(\widehat{ICA}=\widehat{NCB}\)

Do đó: ΔCAI~ΔCBN

b: Ta có: \(\widehat{ACM}+\widehat{ACI}=\widehat{ICM}=90^0\)

\(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

Do đó: \(\widehat{ACM}=\widehat{ICB}\)

Ta có: \(\widehat{CAM}+\widehat{CAB}=\widehat{BAM}=90^0\)

\(\widehat{CAB}+\widehat{CBA}=90^0\)(ΔCAB vuông tại C)

Do đó: \(\widehat{CAM}=\widehat{CBA}\)

Xét ΔCAM và ΔCBI có

\(\widehat{CAM}=\widehat{CBI}\)

\(\widehat{ACM}=\widehat{BCI}\)

Do đó: ΔCAM~ΔCBI

=>\(\dfrac{AC}{CB}=\dfrac{AM}{BI}\)

=>\(AC\cdot BI=MA\cdot BC\)

c: Xét tứ giác CIBN có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)

nên CIBN là tứ giác nội tiếp

=>\(\widehat{CIN}=\widehat{CBN}\)

=>\(\widehat{CIN}=\widehat{BAC}\)