K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có D,E lần lượt là trung điểm của AC,AB

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}=2\left(cm\right)\)

Xét hình thang BEDC có

M,N lần lượt là trung điểm của EB,DC

=>MN là đường trung bình của hình thang BEDC

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)

b: Xét ΔBED có MP//ED
nên \(\dfrac{MP}{ED}=\dfrac{BM}{BE}=\dfrac{1}{2}\)

=>\(MP=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Xét ΔCED có NQ//ED
nên \(\dfrac{NQ}{ED}=\dfrac{CN}{CD}=\dfrac{1}{2}\)

=>\(NQ=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

\(MN=\dfrac{1}{2}\left(ED+BC\right)=\dfrac{1}{2}\left(\dfrac{1}{2}BC+BC\right)=\dfrac{1}{2}\cdot\dfrac{3}{2}BC=\dfrac{3}{4}BC\)

=>\(MP+PQ+QN=\dfrac{3}{4}BC\)

=>\(PQ=\dfrac{3}{4}BC-\dfrac{1}{4}BC-\dfrac{1}{4}BC=\dfrac{1}{4}BC\)

Do đó:MP=PQ=QN

25 tháng 6 2017

Bạn tự vẽ hình nha

a) Vì D,E là trung điểm của AC và AB nên ED là đường trung bình của tam giác ABC.

Suy ra ED = \(\frac{BC}{2}\)\(\frac{4}{2}\)= 2 (cm)

Tứ giác EDCB có ED // BC ( Vì ED là đường trung bình của tam giác ABC) nên EDCB là hình thang.

Vì M, N là trung điểm của EB và CD nên MN là đường trung bình của hình thang EDCB

suy ra MN = \(\frac{ED+BC}{2}\)\(\frac{2+4}{2}\)=3 (cm).

Vậy MN =3 (cm)

b) Ta có MN// ED ( MN là đương tb củahình thang EDCB) nên MP//ED , QN//ED 

Xét tg EBD có MP//ED (cmt)

                     MB =ME (gt)

Suy ra P là trung điểm của BD ,nên MP là đương tb của tg EBD nên MP= \(\frac{ED}{2}\)=\(\frac{2}{2}\)= 1(cm).

Chứng minh tương tự với tg ECD cũng có QN = 1(cm) 

Ta có MN = MP + PQ +QN

         3  = 1+PQ +1

        QN =1 (cm) 

Nên MP=PQ=QN.(đpcm)

Có nhìu chỗ thiếu xót mong mấy bạn thông cảm.

11 tháng 9 2017

Nếu c/m tứ giác MEDN là hình thang thì s bn ơi..................?????

16 tháng 9 2020

A A A B B B C C C D D D E E E N N N M M M P P P Q Q Q

a) Ta có : \(ED=\frac{BC}{2}=\frac{4}{2}=2\left(cm\right)\)

MN là đường trung bình của hình thang BEDC nên ta có :

\(MN=\frac{ED+BC}{2}=\frac{2+4}{2}=3\left(cm\right)\)

b) \(\Delta BED\)có BM = ME(vì M là trung điểm của BE) , mà MP // ED nên BP = PD . Do đó \(MP=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)

\(\Delta\)CED có NC = ND(vì N là trung điểm của CD) , mà NQ // ED nên CQ = CE . Do đó \(NQ=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)

Lại có : PQ = MN - MP - NQ = 3 - 1 - 1 = 1(cm)

Vậy MP = NQ = PQ = 1cm

3 tháng 8 2021

TÍNH ĐỘ DÀI ED thì sao ạ

 

a: \(MN=\sqrt{NP^2-MP^2}=8\left(cm\right)\)

nên NQ=4(cm)

b: Xét ΔQMP và ΔQND có 

QM=QN

\(\widehat{MQP}=\widehat{NQD}\)

QP=QD

Do đó; ΔQMP=ΔQND

Suy ra: MP=ND

7 tháng 12 2017

a, MP =3cm

b, Vì MN =7 cm =>MQ= 3 cm

mà MP  3cm =>MQ = MN= 3cm

=> M là trung điểm của PQ

18 tháng 4 2021

tự vẽ hình nhé 

a, Xét \(\Delta\) MNP và \(\Delta\) HNM

< MNP chung 

<NMP=<NHM(=90\(^0\) )

b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\) 

=> \(MN^2=NP\cdot NH\)

c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có

\(MN^2+MP^2=NP^2\)

=> \(NP^2=144\Rightarrow NP=12cm\)

Ta có \(MN^2=NH\cdot NP\)

Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)

 

 

18 tháng 4 2021

Cách tính MK mình chưa nghĩ ra mong bạn thông cảm