hbh ABCD có O là giao của 2 đường chéo AC và BD đường tròn (O;OA) cắt AB và CD thứ tự tại E và F (khác A và C).
Chứng minh: E;F đối xứng qua O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự vẽ hình nha!
A,
Ta có ABCD là Hcn
-> o là trung điêm của AC và BD
-> OA=OB=OC=OD
ta có OC=OD
-> tam giác ODC cân tại O
mà có Om là đg trung tuyến ( m là trung điêm DC-gt)
-> Om là đg cao
-> góc OMD = 90 độ
Ta có
O là trung điểm AC( cmt)
M là trung điểm CD(gt)
-> Om là đg trung bình tam giác ABC
-> OM song song AD; Om = 1/2 AD
Ta có OM song song Ad( cmt)
-> OMDA là hình thang
mà có góc OMD= 90 độ ( cmt)
-> OMDA là hình thang vuông( đpcm)
B,
Xét tứ giác ANOD có
NM song song AD( cmt- do Om song song AD)
An song song DO(gt- do AN song song DB)
-> ANoD là hbh ( đpcm)
Ok xong rùi☺
Xét tam giác CAE:
Có: E thuộc đường tròn O bán kính AC
=> tg CAE là tg vuông
Xét tam giác FAC:
Có: F thuộc đường tròn O bán kính AC
=> tg FAC là tg vuông.
Xét tứ giác AEFC:
Có: E=F=90 (cmt)
=> tg AEFC là HBH
Mà trong HBH đg chéo cắt nhau tại trung điểm mỗi đường.
Mà: O là trg điểm AC
=> AC cắt EF tại O. Hay O là tđ của FE=>EO=FO
=>ĐPCM
tại sao đường tròn ( O, OA ) lại có thể cắt AB tại điểm khác A và cắt CD tại điểm khác C được ?
A B C D O E F
vì O là giao điểm 2 đường chéo AC và BD của hbh ABCD nên O, là trung điểm AC và BD
=> OA=OC (1)
ta có AE = FC (GT) (2)
trừ theo vế của (1) và (2) ta được
OA-AE = OC - FC
OE = OF => O là trung điểm EF
xét tứ giác EBFD có O là trung điểm đường chéo BD, O là trung điểm đường chéo EF => EBFD là hbh