Cho (O), gọi I là trung điểm của dây AB. Vẽ tiếp tuyến tại A của (O) cắt OI tại M. Chứng minh BM là tiếp tuyến (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó: ΔABC vuông tại A
a: ΔOAB cân tại O
mà OI là trung tuyến
nên OI là phân giác của góc BOA
Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
Do đo: ΔOAC=ΔOBC
=>góc OBC=90 độ
=>CB là tiếp tuyến của (O)
b: góc ACB=60 độ thì góc ACO=30 độ
Xét ΔCAO vuông tại A có tan ACO=AO/AC
=>R/AC=tan 30
=>AC=R căn 3
\(S_{AOC}=R\cdot\dfrac{R\sqrt{3}}{2}=\dfrac{R^2\sqrt{3}}{2}\)
a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C
c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK
\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\) là tiếp tuyến của (O)
d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều
\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều
\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi
e . Ta có :
\(\Delta ACO\) đều
\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)
\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)
\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng
Xét 2 tam giác AMO và tam giác BMO, có:
OM cạnh huyền chung
AM=BM (tính chất tiếp tuyến)
=> tg AMO = tg BMO (ch-cgv)
Mà: AM là tiếp tuyến, suy ra: AM vuông góc với OA (bk)=> góc MAO=90
Lại có: góc MAO= góc MBO =90 độ
=> ĐPCM.