Tìm x biết :
|\(\dfrac{1}{2}\)x|=3-2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)
=>2x=-4
hay x=-2
\(\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{1}{3}\\2x-\dfrac{2}{3}=\dfrac{-1}{3}\end{matrix}\right.\left[{}\begin{matrix}2x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)
a)\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a: =>1/2x=7/2-2/3=21/6-4/6=17/6
=>x=17/3
b: =>2/3:x=-7-1/3=-22/3
=>x=2/3:(-22/3)=-1/11
c: =>1/3x+2/5x-2/5=0
=>11/15x=2/5
hay x=6/11
d: =>2x-3=0 hoặc 6-2x=0
=>x=3/2 hoặc x=3
tìm x biết:
2x:(1+\(\dfrac{1}{1+2}\)\(+\dfrac{1}{1+2+3}\)\(+.....\)\(+\dfrac{1}{1+2+3+...+x}\))=2023
\(2x:\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)=2023\left(1\right)\)
Đặt \(A=\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)\)
\(\Rightarrow A=\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}\right)\)
\(\Rightarrow\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)\)
\(\Rightarrow\dfrac{1}{2}A=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)\)
\(\Rightarrow\dfrac{1}{2}A=1-\dfrac{1}{x+1}\)
\(\Rightarrow A=2\left(1-\dfrac{1}{x+1}\right)\Rightarrow A=\dfrac{2x}{x+1}\)
\(\left(1\right)\Rightarrow2x:\dfrac{2x}{x+1}=2023\)
\(\Rightarrow2x.\dfrac{x+1}{2x}=2023\left(x\ne0\right)\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
a) \(2x-\dfrac{1}{3}=\dfrac{1}{2}-\dfrac{1}{6}\)
\(2x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(2x=\dfrac{1}{3}+\dfrac{1}{3}\)
\(2x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}\div2\)
\(x=\dfrac{1}{3}\)
b) \(\dfrac{1}{3}+\dfrac{2}{3}\cdot\left(x-2\right)=3\)
\(\dfrac{2}{3}\cdot\left(x-2\right)=3-\dfrac{1}{3}\)
\(\dfrac{2}{3}\cdot\left(x-2\right)=\dfrac{8}{3}\)
\(x-2=\dfrac{8}{3}\div\dfrac{2}{3}\)
\(x-2=\dfrac{24}{6}\)
\(x-2=4\)
\(x=4+2\)
\(x=6\)
\(a,\dfrac{x}{8}=\dfrac{7}{-2}\\ \Rightarrow x=-28\\ b,\dfrac{1-2x}{6}=\dfrac{-1}{2}\\ \Leftrightarrow2-4x=-6\\ \Leftrightarrow4x=8\\ \Leftrightarrow x=2\\ c,\dfrac{x+2}{3}=\dfrac{x+3}{4}\\ \Leftrightarrow4x+8=3x+9\\ \Leftrightarrow x=1\\ d,\dfrac{10}{2-x}=2\\ \Leftrightarrow4-2x=10\\ \Leftrightarrow2x=-6\\ \Leftrightarrow x=-3\)
\(\left|\dfrac{1}{2}x\right|=3-2x\)
<=> \(\left[{}\begin{matrix}\dfrac{1}{2}x=3-2x\\-\dfrac{1}{2}x=3-2x\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}\dfrac{5}{2}x=3\\\dfrac{3}{2}x=3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=2\end{matrix}\right.\)
Vậy ...........
tui mới học lớp 6 nhưng pk lm bài này nì