Cho \(a^2+b^2+c^2=a^3+b^3+c^3=1.\)Tính \(C=a^2+b^9+c^{1945}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
0
10 tháng 9 2018
Vì \(a^2+b^2+c^2=1\)
\(\Rightarrow-1\le a,b,c\le1\)
\(\Rightarrow a-1\le0;b-1\le0;c-1\le0\)
Lây cai xau trừ cai trươc được
\(\left(a^3+b^3+c^3\right)-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Ta co \(VT\le0\)
Dâu = xảy ra khi: \(\left(a,b,c\right)=\left\{0,0,1;0,1,0;1,0,0\right\}\)
\(\Rightarrow S=1\)
V
0
HD
0
thong cam bai nay tui dc lam bao h