Tam giác ABC, AC = 16, AB = BC + 10, Lấy D đối xứng của C qua B . Tính AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
D là điểm đối xứng của C qua B nên \(BC=BD\)
Lại có \(AB=BC=10\left(cm\right)\)
\(\Rightarrow AB=\dfrac{CD}{2}\)
Do đó tam giác ADC vuông tại A
Theo định lí Pitago ta có:
\(AD^2=DC^2-AC^2=20^2-16^2=144\)
\(\Rightarrow AD=12\left(cm\right)\)
Bài 3:
Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MN//PH
Do đó MNPH là hình thang
Xét tg AHC vuông tại H có HN là trung tuyến ứng vs ch AC nên \(HN=\dfrac{1}{2}AC\)
Mà P,M là trung điểm BC,AB nên PM là đtb tg ABC
Do đó \(PM=\dfrac{1}{2}AC\)
Từ đó ta được PM=HN
Vậy MNPH là hình thang cân
b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).
Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.
Từ đó NB là tiếp tuyến của (O).
c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)
\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).
Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).
Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).
Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.
Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định
Lời giải:
a. $M$ là trung điểm $BC$, $N$ là trung điểm $AC$ thì $MN$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$
$\Rightarrow MN=\frac{1}{2}AB=\frac{1}{2}.12=6$ (cm)
b. $E, A$ đối xứng nhau qua $M$ nghĩa là $M$ là trung điểm $AE$.
Tứ giác $ABEC$ có 2 đường chéo $BC, AE$ cắt nhau tại trung điểm $M$ của mỗi đường nên $ABEC$ là hình bình hành
Mà $\widehat{BAC}=90^0$ nên $ABEC$ là hình chữ nhật.
b. Vì $B,D$ đối xứng nhau qua $A$ nên $BA=AD$
$ABEC$ là hcn (cmt) nên $AB=EC$
$\Rightarrow AD=EC$ (đpcm)
Mặt khác:
$ABEC$ là hcn nên $AB\parallel EC\Rightarrow AD\parallel EC$
Xét tứ giác $ADCE$ có $AD=CE$ và $AD\parallel CE$ nên $ADCE$ là hbh (đpcm)
a: Xét tứ giác ADBG có
H là trung điểm chung của AB và DG
góc ADB=90 độ
Do đó: ADBG là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
EA=EB=10/2=5cm
P=(5+5+6)/2=16/2=8cm
\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\left(8-6\right)}=\sqrt{8\cdot2\cdot3^2}=4\cdot3=12\left(cm^2\right)\)
Bấm vào đây bạn nhé Câu hỏi của Thi Trương - Toán lớp 8 - Học toán với OnlineMath