K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2024

4ˣ⁺² - 4ˣ = 60

4ˣ(4² - 1) = 60

4ˣ.15 = 60

4ˣ = 60 : 15

4ˣ = 4

x = 1

17 tháng 3 2019

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne30\\x\ne24\end{cases}}\)

Ta có \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)

\(\Leftrightarrow\frac{60}{\frac{120-4x}{x}}+\frac{60}{\frac{120-5x}{x}}=x\)

\(\Leftrightarrow\frac{60x}{120-4x}+\frac{60x}{120-5x}=x\)

\(\Leftrightarrow\frac{60}{120-4x}+\frac{60}{120-5x}=1\left(Do\text{ }x\ne0\right)\)    

\(\Leftrightarrow\frac{15}{30-x}=1-\frac{12}{24-x}\)

\(\Leftrightarrow\frac{15}{30-x}=\frac{24-x-12}{24-x}\)

\(\Leftrightarrow\frac{15}{30-x}=\frac{12-x}{24-x}\)

\(\Leftrightarrow360-15x=\left(12-x\right)\left(30-x\right)\)

\(\Leftrightarrow360-15x=360-42x+x^2\)

\(\Leftrightarrow x^2-27x=0\)

\(\Leftrightarrow x\left(x-27\right)=0\)

\(\Leftrightarrow x=27\left(Tm\text{ }ĐKXĐ\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

27 tháng 5 2020

\(\frac{x-27}{1991}+\frac{x-60}{1958}+\frac{x}{1009}=4\)

<=> \(\frac{x-27}{1991}-1+\frac{x-60}{1958}-1+\frac{x}{1009}-2=0\)

<=> \(\frac{x-2018}{1991}+\frac{x-2018}{1958}+\frac{x-2018}{1009}=0\)

<=> x - 2018 = 0 

<=> x = 2018

Vậy:...

NV
5 tháng 4 2021

Với \(x=0\) không phải nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:

\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)

NV
5 tháng 4 2021

Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý

b.

Đặt \(x+3=t\) 

\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)

\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)

\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)

Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.

4 tháng 3 2019

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)

đk: x khác 2

Đặt \(\frac{x^2}{x-2}=t\)

Ta có phương trình:

\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với t=2 ta có:

\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí

Với t=-2:

\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)

Vậy...

10 tháng 3 2019

\(a.\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x-4x+16-14\right)\left(x^2+7x+4x+16+14\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x+16-4x-14\right)\left(x^2+7x+16+4x+14\right)=0\)

\(\Leftrightarrow\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60=0\)

Vì \(\left(x^2+7x+16\right)^2>0;\left(4x+14\right)^2>0\)

Nên \(\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60\ge-60\)

V...\(S=\varnothing\)

\(b.4^x-12.2^x+32=0\)

\(\Leftrightarrow\left(2^x\right)^2-2.2^x.6+36-4=0\)

\(\Leftrightarrow\left(2^x-6\right)^2-4=0\)

\(\Leftrightarrow\left(2^x-4\right)\left(2^x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2^x-4=0\\2^x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=4\\2^x=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}2^x=2^2\\2^x=2^3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

V...\(S=\left\{2;3\right\}\)

^^ đúng ko ta

29 tháng 12 2019

a) (x+1)(x+2)(x+5)(x+6)-60=0

[(x+1)(x+6)][(x+2)(x+5)]-60=0

(x^2 + 7x + 6)(x^2  + 7x + 10) - 60 = 0

đặt t = x^2 + 7x + 8

pt trở thành

(t-2)(t+2)-60=0

t^2 - 64=0 .....

t=8 hoặc t=-8.

tìm x ....

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)