\(\text{Cho }A=1^{2005}+2^{2005}+3^{2005}+...+n^{2005}\)
\(B=1+2+3+...+n\text{ với n}\in\text{N*.}\)
\(\text{Chứng minh A chia hết cho B}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)
b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)
a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)
\(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004
Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)
\(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010
Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
vì 2005 không chia hết cho 3
Nên 2005n không chia hết cho 3
2005n có dạng 3k+1 hoặc 3k+2
*Nếu 2005n=3k+1 => 2005n+2 chia hết cho 3
*Nếu 2005n=3k+2 => 2005n+1 chia hết cho 3
\(B=1+2+3+...+n\Rightarrow2B=n\left(n+1\right)\)
\(A=1^{2005}+2^{2005}+3^{2005}+...+n^{2005}\)
\(\Rightarrow2A=\left(1^{2005}+n^{2005}\right)+\left[2^{2005}+\left(n-1\right)^{2005}\right]+...+\)\(\left[\left(n-1\right)^{2005}+2^{2005}\right]+\left(n^{2005}+1^{2005}\right)\)
Các biểu thức trong dấu ngoặc đều chia hết cho n + 1 nên:
\(2A⋮\left(n+1\right)\) (1)
Lại có: \(2A=\left[1^{2005}+\left(n-1\right)^{2005}\right]+\left[2^{2005}+\left(n-2\right)^{2005}\right]+...+\) \(\left[\left(n-1\right)^{2005}+1^{2005}\right]+2n^{2005}\)
Các biểu thức trong dấu ngoặc đều chia hết cho n nên:
\(2A⋮n\) (2)
Vì n và n + 1 là 2 số nguyên tố cùng nhau nên từ (1)và(2) \(\Rightarrow2A⋮n\left(n+1\right)=2B\)
Vậy \(A⋮B\)
a: \(=5^{2003}\left(5^2-5+1\right)\)
\(=5^{2003}\cdot21⋮7\)
Xin lỗi: Câu 2 phần b thiếu trường hợp n+1=-1 hoặc n+1=-3 nên n=-2 hoặc n=-4