Cho hình bình hành ABCD. Tia phân giác góc D cắt AB tại E, tia phân giác góc B cắt CD tại F. Chứng minh DE song song với BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác ABCD là hình bình hành => AB//CD; AD//BC.
=> Giao điểm của AC; BD là trung điểm của mỗi đường
=> N là trung điểm BD (1)
Ta có: AE//BD. Mà AD//BE => Tứ giác AEBD là hình bình hành.
=> 2 đường chéo DE và AB cắt nhau tại trung điểm của mỗi đường.
=> M là trung điểm AB (2)
Tương tự: Tứ giác ABDF là hình bình hành
=> P là trung điểm AD (3)
Từ (1); (2) và (3) => G là trọng tâm của tam giác BAD.
=> AN, DM, BP đồng quy = >AC; DE; BF đồng quy (điều cần c/m).
a: Xét tứ giác BECD có
BE//CD
BD//CE
=>BECD là hbh
b: Xét tứ giác BCFD có
BC//FD
BD//CF
=>BCFD là hbh
=>BC=DF=AD
=>D là trung điểm của AF
AB=DC
BE=DC
=>AB=BE
=>B là trung điểm của AC
BD=CE
BD=CF
=>CE=CF
=>C là trung điểm của EF
Xét ΔEAF có
AC,ED,FB là trung tuyến
=AC,ED,FB đồng quy
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
b: Xét ΔDFC có
N là trung điểm của DC
NE//FC
=>E là trung điểm của DF
=>DE=EF
Xét ΔBAE có
M là trung điểm của BA
MF//AE
=>F là trung điểm của BE
=>BF=FE
=>BF=FE=ED
Qua đỉnh C của hình bình hành ABCD kẻ đường thẳng song song với BD cắt AB ở E, cắt AD ở F
a.Tứ giác BECD là hình gì Vì sao
b.Chứng minh 3 đừng thẳng AC, BF, DE đồng quy
Qua đỉnh C của hình bình hành ABCD kẻ đường thẳng song song với BD cắt AB ở E, cắt AD ở F
a.Tứ giác BECD là hình gì Vì sao
b.Chứng minh 3 đừng thẳng AC, BF, DE đồng quy
Tứ giác \(ABCD\) là hình bình hành
=> \(\widehat{ADC}=\widehat{ABC}\)
Lại có: `\(\)BF, DE` lần lượt là phân giác của \(\widehat{ABC}\) và \(\widehat{ADC}\)
=> \(\widehat{ADE}=\widehat{EDC}=\widehat{ABF}=\widehat{FBC}\)
Mà `AB` // `DC =>` \(\widehat{ABF}=\widehat{BFC}\) (2 góc so le trong)
=> \(\widehat{EDC}=\widehat{BFC}\)
Mà 2 góc đó là 2 góc đồng vị
`=> DE` // `BF` (đpcm)