Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB, CD. M là giao điểm của AF và DE. N là giao điểm của BF và CE
a) Chứng minh AECF là hình bình hành
b) Chứng minh BF song song với DE và tứ giác EMFN là hình bình hành
c) Chứng minh 3 đường thẳng AC, EF, MN đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M Q N P I
gọi I là giao điểm của QM và BD
Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)
\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)
vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)
Ta có : MB = NB ; DP = DQ ; PC = NC
nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)
do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng
từ đó ta được đpcm
A B C D E F
a/
Ta có
AB//CD (cạnh đối hbh) => BE//CD
CE//BD (gt)
=> BECD là hình bh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
b/
Ta có
BE=CD (cạnh đối hbh)
AB=CD (cạnh đối hbh)
=> BE=AB => BF là đường trung tuyến của tg AEF
Ta có
CF//BD (gt)
AD//BC (cạnh đối hbh) => DF//BC
=> BCFD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
BC=AD (cạnh đối hbh)
BC=DF (cạnh đối hbh)
=> AD=DF => DE là đường trung tuyến của tg AEF
Ta có
BD=CE (cạnh đối hbh)
BD=CF (cạnh đối hbh)
=> CE=CF => AC là trung tuyến của tg AEF
=> AC; BF; DE đồng quy (trong tg 3 đường trung tuyến đồng quy)
a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(CF=FD=\dfrac{CD}{2}\)
mà AB=CD
nên AE=EB=CF=FD
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác BFDE có
BE//DF
BE=DF
Do đó: BFDE là hình bình hành
=>BF//DE
=>EM//FN
Ta có AECF là hình bình hành
=>AF//CE
=>MF//EN
Xét tứ giác EMFN có
EM//FN
EN//FM
Do đó: EMFN là hình bình hành
c: Ta có: EMFN là hình bình hành
=>EF cắt MN tại trung điểm của mỗi đường(1)
Ta có: AECF là hình bình ahfnh
=>AC cắt EF tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra AC,EF,MN đồng quy