K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Diện tích tam giác BAC là:

\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinABC=\dfrac{1}{2}\cdot5,2\cdot3,5\cdot sin75=\dfrac{91\sqrt{6}+91\sqrt{2}}{40}\)

ABCD là hình bình hành

=>\(S_{ABCD}=2\cdot S_{BAC}=\dfrac{91\sqrt{6}+91\sqrt{2}}{20}\)

loading...  loading...  loading...  loading...  

4 tháng 5 2019

bn tham khảo tại đây nhé :

Bài 57 Sách bài tập - tập 2 - trang 98 - Toán lớp 8 | Học trực tuyến

tuy ko giống hết nhưng bn có thể dựa vào đó mà tham khảo

DD
6 tháng 7 2021

Xét tam giác \(ABD\)vuông tại \(A\):

\(BD^2=AB^2+AD^2\)(định lí Pythagore) 

\(=4^2+10^2=116\)

\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)

Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)

Suy ra \(ABDE\)là hình bình hành. 

\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):

\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)

\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)

\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)

Hạ \(BH\perp CD\).

\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)

\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Hình vẽ:

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:

Kẻ $AH\perp DC$. 
Do $ABCD$ là htc nên $DH=(DC-AB):2=(20-15):2=2,5$ (cm) 

Xét tam giác vuông $ADH$ có:

$\frac{AH}{DH}=\tan D=\tan 75^0$

$\Rightarrow AH=DH\tan 75^0=2,5\tan 75^0=9,33$ (cm) 

$S_{ABCD}=(AB+CD).AH:2=(15+20).9,33:2=163,275$ (cm2)

31 tháng 7 2018

a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)

Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)

Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)

ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)

 \(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)

\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)

\(\Rightarrow\widehat{ABC}=150^0\)

b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)

Diện tích hình thang ABCD là: 

                         \(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\) 

Chúc bạn học tốt.

1 tháng 5 2020

thang cho dung hoi nua

9 tháng 8 2021

từ các đỉnh A,B hạ các đường cao AE,BF vuông góc với CD

dễ chứng minh tứ giác ABFE là hình chữ  nhật

=>EF=AB=12cm

do ABCD là hình thang cân \(=>AD=BC,\angle\left(D\right)=\angle\left(C\right)\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^O\)

\(=>\Delta ADE=\Delta BFC\left(ch-cgn\right)=>DE=FC=\dfrac{1}{2}.\left(DC-EF\right)\)

\(=\dfrac{1}{2}\left(18-12\right)=3cm\)

xét trong tam giác BFC vuông tại F

\(=>\)\(\cos75^o=\dfrac{FC}{BC}=>BC=11,6cm\)

pytago \(=>BF=\sqrt{BC^2-FC^2}=\sqrt{11,6^2-3^2}=11,2cm\)

\(=>S=\dfrac{BF\left(AB+DC\right)}{2}=....\) thay số