K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

Bài 2: 

a: =>x-1=1 hoặc x-1=-1

=>x=2 hoặc x=0

b: =>x+1=-1

hay x=-2

c: =>(135-7x):9=8

=>135-7x=72

=>7x=63

hay x=9

d: =>(x+7)(x-3)<0

=>-7<x<3

e: \(\Leftrightarrow3^{x-3}=18+9=27\)

=>x-3=3

hay x=6

f: =>4-2x=0

hay x=2

10 tháng 2 2022

bài 1 ik

 

2 tháng 10 2021

a) \(\sqrt{\left(2x-3\right)^2}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b) \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\left(đk:x\ge-2\right)\)

\(\Leftrightarrow8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}=20\)

\(\Leftrightarrow5\sqrt{x+2}=20\)

\(\Leftrightarrow\sqrt{x+2}=4\Leftrightarrow x+2=16\Leftrightarrow x=14\left(tm\right)\)

c) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\sqrt{x+3}=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=9\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)

2 tháng 10 2021

a. \(\sqrt{\left(2x-3\right)^2}=7\)

<=> \(\left|2x-3\right|=7\)

<=> \(\left[{}\begin{matrix}2x-3=7\left(x\ge\dfrac{3}{2}\right)\\-2x+3=7\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=10\\-2x=4\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

b. \(\sqrt{64x+128}-\sqrt{25x+50}+\sqrt{4x+8}=20\)  ĐK: \(x\ge-2\)

<=> \(\sqrt{64\left(x+2\right)}-\sqrt{25\left(x+2\right)}+\sqrt{4\left(x+2\right)}-20=0\)

<=> \(8\sqrt{x+2}-5\sqrt{x+2}+2\sqrt{x+2}-20=0\)

<=> \(\sqrt{x+2}.\left(8-5+2\right)-20=0\)

<=> \(5\sqrt{x+2}=20\)

<=> \(\sqrt{x+2}=4\)

<=> \(\left(\sqrt{x+2}\right)^2=4^2\)

<=> \(\left|x+2\right|=16\)

<=> \(\left[{}\begin{matrix}x+2=16\left(x\ge-2\right)\\x+2=-16\left(x< -2\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=14\left(TM\right)\\x=-18\left(TM\right)\end{matrix}\right.\)

c. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)             ĐK: \(x\ge3\)

<=> \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)

<=> \(\sqrt{x-3}.\sqrt{x+3}-3\sqrt{x-3}=0\)

<=> \(\left(\sqrt{x+3}-3\right).\sqrt{x-3}=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x+3}-3=0\\\sqrt{x-3}=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=6\\x=3\end{matrix}\right.\)

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

a: -2x(x+3)+x(2x-1)=10

=>-2x^2-6x+2x^2-x=10

=>-7x=10

=>x=-10/7

b: Sửa đề: 2/3x(9/2x+1/4)-(3x^2+2)=3

=>3x^2+1/6x-3x^2-2=3

=>1/6x-2=3

=>x=30

28 tháng 8 2023

sao sửa, đề nó vậy á

a: =>3^x=3^4*3=3^5

=>x=5

b: =>\(2^{x+1}=2^5\)

=>x+1=5

=>x=4

c: \(\Leftrightarrow3^{x+2-3}=3\)

=>x-1=1

=>x=2

d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)

=>x=4 hoặc x=-4

e: (2x-1)^4=81

=>2x-1=3 hoặc 2x-1=-3

=>2x=4 hoặc 2x=-2

=>x=-1 hoặc x=2

f: (2x-6)^4=0

=>2x-6=0

=>x-3=0

=>x=3

18 tháng 8 2023

a) \(3^x=81\cdot3\)

\(\Rightarrow3^x=3^4\cdot3\)

\(\Rightarrow3^x=3^5\)

\(\Rightarrow x=5\)

b) \(2^{x+1}=32\)

\(\Rightarrow2^{x+1}=2^5\)

\(\Rightarrow x+1=5\)

\(\Rightarrow x=4\)

c) \(3^{x+2}:27=3\)

\(\Rightarrow3^{x+2}:3^3=3\)

\(\Rightarrow3^{x+2-3}=3\)

\(\Rightarrow3^{x-1}=3\)

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

d) \(2x^2=32\)

\(\Rightarrow x^2=16\)

\(\Rightarrow x^2=4^2\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

e) \(\left(2x-1\right)^4=81\)

\(\Rightarrow\left(2x-1\right)^4=3^4\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

f)  \(\left(2x-6\right)^4=0\)

\(\Rightarrow2x-6=0\)

\(\Rightarrow2x=6\)

\(\Rightarrow x=6:2\)

\(\Rightarrow x=3\)

a: =>2x-x=-5/2-1/3

=>x=-17/6

b: =>4(x-2)2=36

=>(x-2)2=9

=>x-2=3 hoặc x-2=-3

hay x=5 hoặc x=-1

c: =>2x+1/2=5/6

=>2x=1/3

hay x=1/6

21 tháng 1 2022

a: =>2x-x=-5/2-1/3

=>x=-17/6

b: =>4(x-2)2=36

=>(x-2)2=9

=>x-2=3 hoặc x-2=-3

hay x=5 hoặc x=-1

c: =>2x+1/2=5/6

=>2x=1/3

hay x=1/6

b: =>4x^2+8x-8x^2+5x-10=0

=>-4x^2+13x-10=0

=>x=2 hoặc x=5/4

c: =>2x^2-5x+6x-15=2x^2+8x

=>x-15=8x

=>-7x=15

=>x=-15/7

d: =>3x^2+15x-2x-10-3x^2-12x=5

=>x-10=5

=>x=15

e: =>x^2-3x+2x^2+2x=3x^2-12

=>-x=-12

=>x=12

a: Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

\(\Leftrightarrow-12x=24\)

hay x=-2

b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

\(\Leftrightarrow2x=-40\)

hay x=-20

27 tháng 9 2021

Em cảm ơn chị~

22 tháng 7 2021

a) `4\sqrt(2x-1)>8`

`<=>\sqrt(2x-1)>2`

`<=>2x-1>4`

`<=>x>5/2`

b) `2\sqrtx-1>3`

`<=>2\sqrtx>4`

`<=>\sqrtx>2`

`<=>x>4`

a) Ta có: \(4\sqrt{2x-1}>8\)

\(\Leftrightarrow2x-1>4\)

\(\Leftrightarrow2x>5\)

hay \(x>\dfrac{5}{2}\)

b) Ta có: \(2\sqrt{x}-1>3\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4