K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

Với p=3 =>p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)p(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số (ĐPCM)

5 tháng 10 2016

a) - Do p là số nguyên tố nên p là số tự nhiên.

*) Xét p=3k+1 => \(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9⋮3\) (hợp số)

*) Xét p=3k+2 => \(p^2+8=\left(3k+2\right)^2+8=9k^2+12k+12⋮3\) (hợp số)

*) Xét p=3k => k=1 do p là số nguyên tố => \(p^2+8=9+8=17\) (t/m)

Ta có: \(p^2+2=11\). Mà 11 là số nguyên tố => điều phải chứng minh.

b) (Làm tương tự bài trên)

 - Do p là số nguyên tố => p là số tự nhiên.

*) Xét p=3k+1 => \(8p^2+1=8\left(3k+1\right)^2+1=8\left(9k^2+6k+1\right)+1=3k.8\left(3k+2\right)+\left(8+1\right)⋮3\)(hợp số)

*) Xét p=3k+2 => \(8p^2+1=8\left(3k+2\right)^2+1=8\left(9k^2+12k+4\right)+1=3k.8\left(3k+4\right)+\left(32+1\right)⋮3\) (hợp số)

*) Xét p=3k => k=1 Do p là số nguyên tố => \(8p^2+1=8.9+1=73\)(t/m)

Ta có : \(2p+1=7\). Mà 7 là số nguyên tố => Điều phải chứng minh.

30 tháng 9 2016

làm ơn giải hộ mình nhanh lên

13 tháng 8 2015

8p+1 nguyên tố

8p-1 là hợp số

9 tháng 1 2016

8p➕1 la so nguyen to

8p➖1la hop so

13 tháng 6 2018

vì p là SNT lớn lơn 3 => p có dạng: 3k+1 hoặc 3k+2( k thuộc N*)

TH1: p=3k+1

=> 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3 ( TM)

TH2: p=3k+2

=> 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3(TM)

vậy nếu p là SNT lớn hơn 3 và  2p+1 cũng là số nguyên tố thì 4p+1 là hợp số

27 tháng 1 2016

Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

12 tháng 12 2016

Bạn có 2 cách làm đó là giả sử và thử. Mình sẽ làm cách thử. Bạn thử xem lại đề nhé xem nó là các số nguyên tố nhỏ hơn 5 đùng không

Với p=0 => 2p+1=1 (loại)

Với p=1 => 2p+1=3. Khi đó 4p+1=5 là số nguyên tố

Với p=2 => 2p+1=5.Khi đó 4p+1=9 là hợp số

Các trường hợp sau bạn tự làm nhé !