K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2024

3.[(2\(x\) + 10): \(x\)] = 12 (\(x\ne\) 0)

   (2\(x\) + 10):\(x\) = 12 : 3

   (2\(x\) + 10) : \(x\)  = 4

   2\(x\) + 10 = 4 x \(x\) 

   4\(x\) - 2\(x\) = 10

    2\(x\) = 10

     \(x=10:2\)

    \(x=5\)

Vậy \(x=5\) 

\(3\left[\dfrac{2x+10}{x}\right]=12\)

=>\(\dfrac{3\left(x+5\right)}{x}=6\)

=>3(x+5)=6x

=>2x=x+5

=>2x-x=5

=>x=5

a: =>\(\dfrac{2x-4}{2014}+\dfrac{2x-2}{2016}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)

=>\(\dfrac{2x-2018}{2014}+\dfrac{2x-2018}{2016}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\)

=>2x-2018<0

=>x<2019

b: \(\Leftrightarrow\left(\dfrac{3-x}{100}+\dfrac{4-x}{101}\right)>\dfrac{5-x}{102}+\dfrac{6-x}{103}\)

=>\(\dfrac{x-3}{100}+\dfrac{x-4}{101}-\dfrac{x-5}{102}-\dfrac{x-6}{103}< 0\)

=>\(x+97< 0\)

=>x<-97

10 tháng 4 2022

\(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\)

\(ĐK:x\ne0;-10\)

\(\Leftrightarrow\dfrac{12\left(x+10\right)+12x}{12x\left(x+10\right)}=\dfrac{x\left(x+10\right)}{12x\left(x+10\right)}\)

\(\Leftrightarrow12\left(x+10\right)+12x-x\left(x+10\right)=0\)

\(\Leftrightarrow12x+120+12x-x^2-10x=0\)

\(\Leftrightarrow-x^2+14x+120=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-6\end{matrix}\right.\)

10 tháng 4 2022

\(o,\dfrac{x}{2x+6}-\dfrac{x}{2x-2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{x}{2\left(x+3\right)}-\dfrac{x}{2\left(x+1\right)}-\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)-x\left(x+3\right)-2\left(3x+2\right)}{2\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+x-x^2-3x-6x-4=0\)

\(\Leftrightarrow-8x-4=0\)

\(\Leftrightarrow-4\left(2x+1\right)=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy \(S=\left\{-\dfrac{1}{2}\right\}\)

22 tháng 12 2021

\(\left\{{}\begin{matrix}2x+5y=10\\-2x-5y=-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\2x+5y-2x-5y=10-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+5y=10\\0=-2\left(vô.lí\right)\end{matrix}\right.\)

vậy hệ phương trình vô nghiệm

22 tháng 12 2021

Có \(\dfrac{2}{-2}=\dfrac{5}{-5}\ne\dfrac{10}{-12}\) nên hệ vô nghiệm (sách giáo khoa)

11 tháng 5 2018

x - 1 2 + x - 1 4 = 1 - 2 x - 1 2 ⇔ x - 1 2 + x - 1 4 = 1 - 2 x - 2 3

⇔ 6(x – 1) + 3(x – 1) = 12 – 4(2x – 2)

⇔ 6x – 6 + 3x – 3 = 12 – 8x + 8 ⇔ 6x + 3x + 8x = 12 + 8 + 6 + 3

⇔ 17x = 29 ⇔ x = 29/17

Phương trình có nghiệm x = 29/17

4 tháng 4 2023

\(a,\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+2y=6\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=5\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\2x-3.1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2;1\right)\)

b, \(x^2-7x+10=0\\ \Leftrightarrow x^2-5x-2x+10=0\\ \Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

4 tháng 4 2023

\(a,\)\(\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=9\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2.2-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(2;1\right)\)

\(b,x^2-7x+10=0\)

\(\Delta=b^2-4ac=\left(-7\right)^2-4.10=9>0\)

\(\Rightarrow\) Pt có 2 nghiệm \(x_1,x_2\)

Ta có :

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{7+3}{2}=5\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{7-3}{2}=2\end{matrix}\right.\)

Vậy \(S=\left\{5;2\right\}\)

9 tháng 1 2023

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {{x^2} + 3x + 1}  = 3\)

\(\begin{array}{l} \Rightarrow {x^2} + 3x + 1 = 9\\ \Rightarrow {x^2} + 3x - 8 = 0\end{array}\)

\( \Rightarrow x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

Thay hai nghiệm trên vào phương trình \(\sqrt {{x^2} + 3x + 1}  = 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{{ - 3 - \sqrt {41} }}{2}\) và \(x = \frac{{ - 3 + \sqrt {41} }}{2}\)

b) \(\sqrt {{x^2} - x - 4}  = x + 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 4 = {\left( {x + 2} \right)^2}\\ \Rightarrow {x^2} - x - 4 = {x^2} + 4x + 4\\ \Rightarrow 5x =  - 8\\ \Rightarrow x =  - \frac{8}{5}\end{array}\)

Thay \(x =  - \frac{8}{5}\) và phương trình \(\sqrt {{x^2} - x - 4}  = x + 2\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{8}{5}\)

c) \(2 + \sqrt {12 - 2x}  = x\)

\(\begin{array}{l} \Rightarrow \sqrt {12 - 2x}  = x - 2\\ \Rightarrow 12 - 2x = {\left( {x - 2} \right)^2}\\ \Rightarrow 12 - 2x = {x^2} - 4x + 4\\ \Rightarrow {x^2} - 2x - 8 = 0\end{array}\)

\( \Rightarrow x =  - 2\) và \(x = 4\)

Thay hai nghiệm vừa tìm được vào phương trình \(2 + \sqrt {12 - 2x}  = x\) thì thấy chỉ có \(x = 4\) thỏa mãn

Vậy \(x = 4\) là nghiệm của phương trình đã cho.

d) Ta có biểu thức căn bậc hai luôn không âm nên \(\sqrt {2{x^2} - 3x - 10}  \ge 0\forall x \in \mathbb{R}\)

\( \Rightarrow \sqrt {2{x^2} - 3x - 10}  =  - 5\) (vô lí)

Vậy phương trình đã cho vô nghiệm

18 tháng 9 2018

2x + x + 12 = 0

⇔ 3x + 12 = 0

⇔ 3x = -12

⇔ x = -12 : 3

⇔ x = -4

Vậy phương trình đã cho có nghiệm duy nhất x = -4

2 tháng 7 2017

2 x - 1 2  + (2 – x)(2x – 1) = 0

⇔ (2x – 1)(2x – 1) + (2 – x)(2x – 1) = 0

⇔ (2x – 1)[(2x – 1) + (2 – x)] = 0

⇔ (2x – 1)(2x – 1 + 2 – x) = 0

⇔ (2x – 1)(x + 1) = 0 ⇔ 2x – 1 = 0 hoặc x + 1 = 0

      2x – 1 = 0 ⇔ x = 0,5

      x + 1 = 0 ⇔ x = - 1

Vậy phương trình có nghiệm x = 0,5 hoặc x = - 1