Cho tam giac MNP, co NP= 10cm, góc N = 50 độ, góc P = 30 độ, đường cao MH. Hãy tính độ dài MN, MH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:
\(MH\cdot MD=MP^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(PH\cdot PN=MP^2\left(2\right)\)
Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)
Đề cs sai k bạn ???
+) Xét \(\Delta\)MNP vuông tại M
\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)
\(\Rightarrow NP^2=10^2+10^2\)
\(\Rightarrow NP^2=100+100=200\)
\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )
Tham khảo
tự vẽ hình nhé
a, Xét ΔΔ MNP và ΔΔ HNM
< MNP chung
<NMP=<NHM(=9000 )
b,=> MNHN=NPMNMNHN=NPMN
=> MN2=NP⋅NHMN2=NP⋅NH
c, xét ΔΔ NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
MN2+MP2=NP2MN2+MP2=NP2
=> NP2=144⇒NP=12cmNP2=144⇒NP=12cm
Ta có MN2=NH⋅NPMN2=NH⋅NP
Thay số:7,22=NH⋅12⇒NH=4,32cm7,22=NH⋅12⇒NH=4,32cm
a: \(\widehat{P}=180^0-50^0-64^0=66^0>\widehat{N}\)
nên MN>MP
b: Xét ΔMNP có MN>MP
mà HN là hình chiếu của MN trên NP
và HP là hình chiếu của MP trên NP
nên HN>HP
b: \(\widehat{NMH}+\widehat{N}=90^0\)
\(\widehat{P}+\widehat{N}=90^0\)
Do đó: \(\widehat{NMH}=\widehat{P}\)
Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\)
=>\(NH\cdot3NH=6^2=36\)
=>\(NH^2=12\)
=>\(NH=2\sqrt{3}\left(cm\right)\)
=>\(NP=3\cdot NH=6\sqrt{3}\left(cm\right)\)
ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(MP^2+6^2=\left(6\sqrt{3}\right)^2=108\)
=>\(MP^2=108-36=72\)
=>\(MP=6\sqrt{2}\left(cm\right)\)
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)