Tìm tất cả các số nguyên tố x, y sao cho:
x2 - 12y2 = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\Leftrightarrow\left(7x-11\right)^3=32\cdot25+200=1000\)
=>7x-11=10
=>7x=21
hay x=3
có x2+117=y2 ;x2+ y2 =-117
giả sử x,y khác 2
do x,y nguyên tố nên x,y lẻ
=>x2 ,y2 đều lẻ=>x2 -y2 chẳn (vô lý)
do đó trong x,y có 1 số bằng 2
mà x<y=>x=2
có y2=22 +117=121
=>y=11
vậy x=2,y=11
\(x^2-6y^2=1\)
\(+,y=2\Rightarrow x^2=4.6+1=25\Rightarrow x=5\left(\text{thỏa mãn}\right)\)
\(+,y>2\Rightarrow x>2\Rightarrow x;y\text{ lẻ }\Rightarrow x^2;y^2\text{ chia 4 dư 1}\Rightarrow1\text{ chia 4 dư:}1-2=-1\left(\text{vô lí}\right)\)
Vậy: x=5;y=2
\(\left(x^2-y^2\right)^2=4xy+1\)
<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)
<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)
<=> \(x^2+y^2=2xy+1\)
<=> \(\left(x-y\right)^2=1\)
<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)
Ta có 46y là số chẵn với mọi y.
Nếu x là SNT lớn hơn 2=> 59x lẻ=>59x+46y lẻ(ko thỏa mãn đề bài)
=>x chẵn. Mà chỉ có số 2 là SNT chẵn duy nhất =>x=2
=>y=(2004-59.2)/46=41
Ta có x2-12y2 = 1
=> x2= 12y2
=>x= 12y
=> y= \(\frac{x}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y}{1}=\frac{x}{12}=\frac{x-y}{1-12}\)=\(\frac{1}{-11}\)
=> y= \(\frac{1}{-11}\); x=\(\frac{-1}{121}\)
bạn newton làm sai bét