b=1/2³+1/3³+...+1)2021³. chứng minh b <1/2²
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(a>b\)
\(\Leftrightarrow-2020a< -2020b\)(nhân hai vế của bất đẳng thức cho -2020 và đổi dấu)
\(\Leftrightarrow-2020a+2021< -2020b+2021\)(cộng hai vế của bất đẳng thức cho 2021)(đpcm)
2) Ta có: \(-2-7x>\left(3+2x\right)-\left(5-6x\right)\)
\(\Leftrightarrow-2-7x>3+2x-5+6x\)
\(\Leftrightarrow-2-7x>8x-2\)
\(\Leftrightarrow-2-7x-8x+2>0\)
\(\Leftrightarrow-15x>0\)
\(\Leftrightarrow-15x\cdot\frac{-1}{15}< 0\cdot\frac{-1}{15}\)(nhân hai vế của bất đẳng thức cho \(-\frac{1}{15}\) và đổi dấu)
hay x<0
Vậy: S={x|x<0}
S = 1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²
⇒ S/3 = 1/3² + 1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³
⇒ 2S/3 = S - S/3
= (1/3 + 1/3² + 1/3³ + ... + 1/3²⁰²¹ + 1/3²⁰²²) - (1/3² +1/3³ + 1/3⁴ + ... + 1/3²⁰²² + 1/3²⁰²³)
= 1/3 - 1/3²⁰²³
⇒ S = (1/3 - 1/3²⁰²³) : 2/3
= (1 - 1/3²⁰²²) : 2
Lại có: 1 - 1/3²⁰²² < 1
⇒ S < 1/2
\(B=2021\cdot1\cdot2\cdot3\cdot...\cdot2022\cdot\left(1+\dfrac{1}{2}+...+\dfrac{1}{2022}\right)⋮2021\)
B=5+52+53+...+52021
5B= 52+53+54+...+52022.
5B-B=(52-52) + (53-53) + (54-54) + ... + (52022-5)
4B= 0 + 0 + 0 + ... + 52022-5
4B= 52022-5
⇒ B=\(\frac{5^{2022}-5}{4}\)
------------------
52022 = ...5.
...5 - 5 = ...0
Mà số có c/s tận cùng là 0 : 4 thì sẽ ra số có tận cùng là 0 hoặc 5.
Vậy: B có c/s tận cùng là 0 hoặc 5.
------------------
B có chữ số tận cùng là ...0 + ...8 = ...8 (Mà số chính phương không có tận cùng là 8) (1)
B có chữ số tận cùng là ...5 + ...8 = ...3 (Mà số chính phương không có tận cùng là 3) (2)
\(\Rightarrow\)B không phải là số chính phương.
Xong rùi đó. Dễ mà. 😊
a: B=1-1/2+1/2-1/3+...+1/2020-1/2021
=1-1/2021=2020/2021
b:
1/2^2+1/3^2+...+1/2021^2>0
=>A>1
1/2^2+1/3^2+...+1/2021^2<1-1/2+1/2-1/3+...+1/2020-1/2021=2020/2021
=>A<2020/2021+1
mà A>1
nên 1<A<1+2020/2021
=>A ko là số nguyên
Giúp mình với please