cho các số nguyên dương: \(a_1;a_2;a_3;...;a_{2013}\) sao cho:
\(N=a_1+a_2+a_3+...+a_{2013}\) chia hết cho 30.
chứng minh: \(M=a_1^5+a_2^5+a_3^5+...+a_{2013}^5\) chia hết cho 30.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).
Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).
Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).
Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).
Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).
ta có
a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0
a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0
Ta có:
(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0
=>(a13+a14)<0
có a12+a13+a14>0=>a12>0
Từ các cmt suy ra a1>0; a12>0; a14<0
=>a1. a14+a12.a12<a1.a12(đpcm)
# HOK TỐT #
ta có
a1+(a2+a3+a4)+... +(a11+a12+a13)+a14+(a15+a16+a17)+(a18+a19+a20)<0
a1>0; a2+a3+a4>0;...;a11+a12+a13>0;a15+a16+a17>0;a18+a19+a20>0; a14<0
Ta có:
(a1+a2+a3)+...+(a10+a11+a12)+(a13+a14)+(a15+a16+a17)+(a18+a19+a20)<0
=>(a13+a14)<0
có a12+a13+a14>0=>a12>0
Từ các cmt suy ra a1>0; a12>0; a14<0
=>a1. a14+a12.a12<a1.a12
Ta có \(a_1< a_2< ...< a_9\)
\(\Rightarrow a_1+...+a_9< 3a_3+3a_6+3a_9\)
Khi đó: \(\frac{a_1+...+a_9}{a_3+a_6+a_9}< \frac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}< 3\)(1)
Chứng minh tương tư ta có \(\Rightarrow a_1+...+a_9>3a_1+3a_4+3a_7\)
Khi đó \(\frac{a_1+...+a_9}{a_1+a_4+a_7}>\frac{3\left(a_1+a_4+a_7\right)}{a_1+a_4+a_7}>3\)(2)
Từ (1) và (2) => Điều phải chứng minh.
Chúc bạn học tốt!