Cho đa thức \(f_{\left(x\right)}\) khi chia cho x+1 dư 4, khi chia x2 + 1 dư 2x + 3. Tìm đa thức dư khi chia \(f_{\left(x\right)}\) cho : (x + 1). ( x2 + 1 )
AI NHANH MIK TICK Ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có:
\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)
tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)
từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Câu a :
Theo đề bài ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
Vậy đa thức \(f\left(x\right)=x^2-2x+3\)
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến
Gọi Q(x); P(x) lần lượt là thương của f(x) cho x- 1; f(x) cho x + 2.
Vì (x -1)(x +2) có dạng bậc 2 => đa thức dư có dạng ax + b.
Ta có: f(x) = (x - 1). Q(x) + 4
f(x) = (x + 2) . P(x) + 1
f(x) = (x - 1)(x +2). 5x2 + ax + b
Tại x = 1 thì f(1) = 4 = a + b (1)
Tại x = -2 thì f(-2) = 1 = -2a + b (2)
Trừ vế (1) cho (2) được:
\(a+b+2a-b=3\)
\(\Rightarrow a=1\)
Khi đó: \(b=3\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x+2\right).5x^2+x+3\)
= (x2 +x - 2). 5x2 +x + 3
= 5x4 + 5x3 - 5x2 + x + 3.
Mk làm theo đề bạn nói cho mk: c) khi chia cho (x-1)(x+2) thì đc thương là 5x^2 và còn dư
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=x22−x2+cf(x)=x22−x2+c
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)2
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=x22−x2+cf(x)=x22−x2+c
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=n22−n2=n(n−1)2
:3
Lời giải:
Gọi đa thức thương và đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$ lần lượt là $Q(x)$ và $ax^2+bx+c$ với $a,b,c$ là số thực.
Ta có:
$f(x)=(x+1)(x^2+1)Q(x)+ax^2+bx+c$
$f(x)=(x+1)(x^2+1)Q(x)+a(x^2-1)+b(x-1)+(a+b+c)$
$=(x+1)[(x^2+1)Q(x)+a(x-1)+b]+(a+b+c)$
$\Rightarrow f(x)$ chia $x+1$ dư $a+b+c$
$\Rightarrow a+b+c=4(1)$
Lại có:
$f(x)=(x+1)(x^2+1)Q(x)+a(x^2+1)+bx+(c-a)$
$=(x^2+1)[(x+1)Q(x)+a]+bx+(c-a)$
$\Rightarrow f(x)$ chia $x^2+1$ dư $bx+(c-a)$
$\Rightarrow b=2; c-a=3(2)$
Từ $(1); (2)\Rightarrow b=2; c=2,5; a=-0,5$