K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7

Gọi T là giao điểm của EF và BC. M là trung điểm DT.

Ta thấy \(AF=AE;BF=BD;CD=CE\) nên \(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=1\)

Theo định lý Menalaus, ta có \(\dfrac{TB}{TC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=1\)

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{TB}{TC}\)  (1)

Đặt \(MD=MT=x;MB=b;MC=c\). Khi đó từ (1) có:

\(\dfrac{MD-MB}{MC-MD}=\dfrac{MB+MT}{MC+MT}\)

\(\Leftrightarrow\dfrac{x-b}{c-x}=\dfrac{b+x}{c+x}\)

\(\Leftrightarrow xc+x^2-bc-bx=bc-bx+cx-x^2\)

\(\Leftrightarrow x^2=bc\)

\(\Leftrightarrow MT^2=MD^2=MH^2=MB.MC\)

\(\Leftrightarrow\dfrac{MH}{MC}=\dfrac{MB}{MH}\)

Tam giác MBH và MHC có:

\(\dfrac{MH}{MC}=\dfrac{MB}{MH}\) và \(\widehat{HMB}\) chung

\(\Rightarrow\Delta MBH\sim\Delta MHC\left(c.g.c\right)\)

\(\Rightarrow\widehat{MHB}=\widehat{MCH}\)

Lại có \(\widehat{MHT}=\widehat{MTH}\) 

\(\Rightarrow\widehat{MHB}+\widehat{MHT}=\widehat{MCH}+\widehat{MTH}\)

\(\Rightarrow\widehat{BHT}=\widehat{CHE}\) (vì \(\widehat{CHE}\) là góc ngoài tại H của tam giác CHT)

\(\Rightarrow90^o-\widehat{BHT}=90^o-\widehat{CHE}\)

\(\Rightarrow\widehat{BHD}=\widehat{CHD}\)

\(\Rightarrow\) HD là tia phân giác của \(\widehat{BHC}\) (đpcm)

a: Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

Do đó: ΔBHC=ΔBMC

a) Xét ΔBDA vuông tại A và ΔBDH vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBDA=ΔBDH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔBDA=ΔBDH(cmt)

nên DA=DH(hai cạnh tương ứng)

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC

9 tháng 4 2023

loading...

a: Xét ΔADH và ΔADB có

AD chung

\(\widehat{DAH}=\widehat{DAB}\)

AH=AB

Do đó: ΔADH=ΔADB

=>\(\widehat{ADH}=\widehat{ADB}\) và \(\widehat{ABD}=\widehat{AHD}\)

Xét ΔAHE vuông tại A và ΔABC vuông tại A có

AH=AB

\(\widehat{AHE}=\widehat{ABC}\)

Do đó: ΔAHE=ΔABC

=>AE=AC 

=>ΔAEC cân tại A

Ta có: ΔAEC cân tại A

mà AD là đường phân giác

nên AD\(\perp\)EC