K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

Nhận xét: với mọi a thuộc Z

 \(a\left(a^2-1\right)=\left(a-1\right).a.\left(a+1\right)\)chia hết cho 3 và chia hết cho 2

mà (3, 2)=1

=> \(a\left(a^2-1\right)\)chia hết cho 6 (1)

Với mọi m, n thuộc Z

\(m^3n-mn^3=mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)

Từ (1) => \(m\left(m^2-1\right)⋮6,n\left(n^2-1\right)⋮6\)=> \(m^3n-mn^3⋮6\)với mọi m, n thuộc Z

23 tháng 2 2019

Ta có : m.n( m2.n

= m.n [( m2 - 1 ) - ( n2 - 1)]

= m( m2 - 1 )n - mn( n2 - 1 )

=  ( m - 1 )m( m + 1 )n - m( n - 1 )n( n + 1 )

Ta thấy: * ( m - 1) ; m và ( m + 1) là ba số nguyên liên tiếp 

                => ( m - 1 )m( m + 1 ) chia hết cho 6

                => ( m - 1 )m ( m + 1 )n chia hết cho 6 (1)

             * ( n - 1) ; n ; ( n + 1 ) là ba số nguyên liên tiếp

                => ( n - 1)n( n + 1 ) chia hết cho 6

                => m( n - 1 )n( n + 1 ) chia hết cho 6 (2)

Từ (1) và (2) suy ra : ( m - 1)m( m + 1)n - m( n - 1)n( n + 1 ) chia hết cho 6

Vậy m.n( m2.n) chia hết cho 6 (đpcm)

Hok tốt !

23 tháng 2 2019

Em kiểm tra lại đề và có thể tham khảo 1 cách giải ( lớp 7 có thể hiểu):

Câu hỏi của Luong Ngoc Quynh Nhu - Toán lớp 8 - Học toán với OnlineMath

8 tháng 12 2016

\(n^2\)- n = nn - n.1 =  n . ( n - 1)

Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn

\(\Rightarrow\)  n chia hết cho 2 hoặc (n-1) chia hêt cho 2

\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2

23 tháng 2 2019

Ta có : a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) = ( a - 1 )a( a + 1 )

Ta thấy : a - 1 và a là hai số nguyên liên tiếp.

=> ( a + 1 )a chia hết cho 2 (1)

Lại thấy: ( a - 1) ; a và ( a + 1 ) là ba số nguyên liên tiếp.

=> ( a - 1)a( a + 1 ) chia hết cho 3 (2)

Từ (1) và (2) suy ra  ( a - 1)a( a + 1 ) chia hết cho 2 và 3

Mà ( 2;3 ) = 1

Có : 2 . 3 = 6

=> ( a - 1)a( a + 1 ) chia hết cho 6

=> a3 - a chia hết cho 6 với mọi a thuộc Z (đpcm)

Hok tốt !

31 tháng 10

n là số tự nhiên nên n có dạng: n = 3k; n = 3k +1; n = 3k +2 (k \(\in\) N)

Vơi n = 3k ta có: n(n + 1).(n + 5) = 3k(3k+1).(3k+5)⋮ 3

Nếu n = 3k + 1 ta có:

n(n+1)(n+5)=(3k + 1).(3k+ 1+1).(3k + 1+ 5) = (3k + 1)(3k+2)(3k+6) ⋮ 3

Nếu n =3k + 2 ta có: 

n(3n  +2 + 1).(3n + 2 + 5) = n(3n+3)(3n+7) ⋮ 3 

Tư những lập luận và phân tích trên ta có: n(n+1)(n+5)⋮ 3 ∀ n \(\in\) N

 

13 tháng 8 2016

Bài 1 A=xyz+xz-zy-z+xy+x-y-1

thay các gtri x=-9, y=-21 và z=-31 vào là đc

=> A=-7680

Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n

b) 49n+77n-29n-1

=\(49^n-1+77^n-29^n\)

=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)

=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))

=> tích trên chia hết 48

c) 35x-14y+29-1=7(5x-2y)+7.73

=7(5x-2y+73) tích trên chia hết cho 7

=. ĐPCM

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

9 tháng 6 2016

a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM

b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.

Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9

9 tháng 6 2016

a) A = n3 +3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2.( n+1) + 2n.(n+1)

A = (n+1).(n2+2n)

A = (n+1).n.(n+2)

A = n.(n+1).(n+2)

Vì n.(n+1).(n+2) là tích 3  số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3

=> A chia hết cho 3

Chứng tỏ A chia hết cho 3 với mọi n nguyên

b) Ta có: 15 = 3.5

Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5

Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5

Mặt khác n<10 nên n<n+1<n+2<12

Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy các giá trị của n tìm được là: 3;4;5;8;9

Với n=1 thì 1^3+2*1=3 chia hết cho 3

Với n>1 thì Giả sử n^3+2n chia hết cho 3

Chúng ta cần chứg minh (n+1)^3+2(n+1) chia hết cho 3

\(A=\left(n+1\right)^3+2\left(n+1\right)\)

\(=n^3+3n^2+3n+1+2n+2\)

=n^3+3n^2+5n+3

=n^3+2n+3n^2+3n+3n+3

=n^3+2n+3(n^2+n+n+1) chia hết cho 3

=>ĐPCM

6 tháng 10 2018

a,  29 - 1 = 511 không chia hết cho 3.

b, \(5^6-10^4=5^6-5^4.2^4\)

                     \(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)

c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)

d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)

Chúc bạn học tốt