K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow2m-1=0\)

hay m=1/2

7 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2m-1=0\\m-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\m\ne1\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{2}\)

25 tháng 11 2021

ĐKXĐ: \(m-7\ne0\Rightarrow m\ne7\)

Để hàm số \(y=\dfrac{m+6}{m-7}.x+4\) là hàm số bậc nhất thì\(\dfrac{m+6}{m-7}\ne0\Rightarrow m+6\ne0\Rightarrow m\ne-6\)

Vậy để Để hàm số \(y=\dfrac{m+6}{m-7}.x+4\) là hàm số bậc nhất thì\(\left\{{}\begin{matrix}m\ne-6\\m\ne7\end{matrix}\right.\)

a: Để hai đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)

Vậy: Không có (m,n) nào để hai đường thẳng trùng nhau

Để hai đường thẳng trùng nhau thì 

\(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)

a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2\ne n+3\end{matrix}\right.\Leftrightarrow3m=2\Leftrightarrow m=\dfrac{2}{3}\)

b: Để hai đường thẳng cắt nhau thì \(m-1\ne-2m+1\)

\(\Leftrightarrow3m\ne2\)

hay \(m\ne\dfrac{2}{3}\)

a: Đặt (d1): \(y=\left(2m-1\right)x+n+1\)

(d2): \(y=\left(5-m\right)x-1-n\)

Để (d1) cắt (d2) thì \(2m-1\ne5-m\)

=>\(3m\ne6\)

=>\(m\ne2\)

b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1\ne-1-n\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3m=6\\2n\ne-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\n\ne-1\end{matrix}\right.\)

c: Để \(\left(d1\right)\equiv\left(d2\right)\) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1=-n-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3m=6\\2n=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\n=-1\end{matrix}\right.\)

a: Để hàm số (1) là hàm số bậc nhất thì \(m^2+m-2< >0\)

=>\(m^2+2m-m-2< >0\)

=>\(\left(m+2\right)\left(m-1\right)< >0\)

=>\(\left\{{}\begin{matrix}m+2< >0\\m-1< >0\end{matrix}\right.\Leftrightarrow m\notin\left\{-2;1\right\}\)

Để hàm số nghịch biến thì (m+2)(m-1)<0

TH1: \(\left\{{}\begin{matrix}m+2>0\\m-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-2\\m< 1\end{matrix}\right.\)

=>-2<m<1

TH2: \(\left\{{}\begin{matrix}m+2< 0\\m-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)

=>Loại

b: Để hàm số (1) là hàm hằng thì \(m^2+m-2=0\)

=>(m+2)(m-1)=0

=>\(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)