x^4+7x^2-2x+2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................

a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4-4x^2+2x^3-8x+x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2x\left(x^2-4\right)+\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)
Đặt \(t=x^2-4\), ta có :
\(t\left(t-6\right)-72=0\)
\(\Leftrightarrow t^2-6t-72=0\)
\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-12=0\\t+6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\left(tm\right)\\x^2+2=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm4\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;-4\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(2x+1=0\)
hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=-1\)
hoặc \(x=-\frac{1}{2}\)
hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)
a, \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^3+x^2-4x-4\right)\left(x+1\right)=0\)
TH1 : \(x+1=0\Leftrightarrow x=-1\)
TH2 : \(x^3+x^2-4x-4=0\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
=> \(x=-1;x=\pm2\)
b, \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-14x^2+40=72\)
\(\Leftrightarrow x^4-14x^2-32=0\) Đặt \(x^2=t\left(t\ge0\right)\)
Ta có pt mới : \(t^2-14t-32=0\) Tự xử

Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)

Lời giải:
PT \(\Leftrightarrow 2x^4-2x^2+(7x^3-7x)+(3x^2-3)=0\)
\(\Leftrightarrow 2x^2(x^2-1)+7x(x^2-1)+3(x^2-1)=0\)
\(\Leftrightarrow (2x^2+7x+3)(x^2-1)=0\)
\(\Leftrightarrow (2x^2+6x+x+3)(x^2-1)=0\)
\(\Leftrightarrow [2x(x+3)+(x+3)](x^2-1)=0\)
\(\Leftrightarrow (x+3)(2x+1)(x-1)(x+1)=0\Rightarrow \left[\begin{matrix} x=-3\\ x=-\frac{1}{2}\\ x=-1\\ x=1\end{matrix}\right.\)

a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)

a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)
hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)
\(\Leftrightarrow x^2-9=0\)
=>x=3 hoặc x=-3

a, \(\left(2x+1\right)\left(x^2+2\right)=0\)
TH1 : \(x=-\frac{1}{2}\); TH2 : \(x^2=-2\)vô lí vì \(x^2\ge0\forall x;-2< 0\)
b, \(\left(x^2+4\right)\left(7x-3\right)=0\)
TH1 : \(x^2=-4\)vô lí vì \(x^2\ge0\forall x;-4< 0\)
TH2 : \(x=\frac{3}{7}\)
c, \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
TH1 : \(x^2+x+1\ne0\)vì \(x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
TH2 : \(2x=6\Leftrightarrow x=3\)
d, \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
TH1 : \(x=\frac{1}{2}\)
TH2 : \(x^2+2x+2\ne0\)vì \(x^2+2x+1+1=\left(x+1\right)^2+1>0\)

a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>
2x+1=0<=>x=\(-\frac{1}{2}\)
hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)
Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))
b)\(\left(x^2+4\right)\left(7x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)
\(x^2=-4\) vô lí
Vậy ..........
c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)
Vì \(x^2+x+1>0\)(dễ dàng c/m)
=>6-2x=0=>x=3
Vậy...
d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
<=>8x-4=0,x=\(\frac{1}{2}\)
hoặc \(x^2+2x+2=0\)(vô lí)
Vậy .....

\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(3x-4\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-4-2x-2\right)\left(3x-4+2x+2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\) ( thỏa mãn )
Vậy : ...
1/ \(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow9x^2-24x+16-4\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow9x^2-24x+16-4x^2-8x-4=0\)
\(\Leftrightarrow5x^2-32x+12=0\)
\(\Leftrightarrow5x^2-30x-2x+12=0\)
\(\Leftrightarrow5x\left(x-6\right)-2\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\5x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{6;\frac{2}{5}\right\}\)
2/ \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+2x^2+x-2x^2-4x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)^2\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x+1=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-1\right\}\)
Có \(VT=x^4+6x^2+x^2-2x+1+1\)
\(=x^4+6x^2+\left(x-1\right)^2+1\)
Vì \(x^4,6x^2,\left(x-1\right)^2\ge0;1>0\) nên \(VT>0\). Do đó dấu "=" không thể xảy ra hay pt đã cho vô nghiệm.