CMR : ( 3^100 - 3 ) chia hết cho 13
Làm nhanh hộ mình rồi mìn tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100 ( có 100 số; 100 chia hết cho 4)
= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (97 - 98 - 99 + 100)
= 0 + 0 + ... + 0
= 0
2) Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k thuộc Z)
Ta có:
2k.(2k + 2)
= 2k.2.(k + 1)
= 4.k.(k + 1)
Vì k.(k + 1) là tích 2 số tự nhiên liên tiếp nên k.(k + 1) chia hết cho 2
=> 4.k.(k + 1) chia hết cho 8
=> đpcm
Chú ý: nếu bn chưa học tập hợp Z thì có thể sửa thành tập hợp N
1.1-2-3+4+5-6-7+8+...+97-98-99+100
=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0.50
=0
2.VD : 2 số chẵn là 2 ; 4
2 x 4 = 8 chia hết cho 8 nên tích 2 số chẵn liên tiếp chia hết cho 8
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
Ta suy ra điều phải chứng minh.
NẾU NHƯ LÀ :a-5b thì mình biết làm:
ĐẶT A=5a-b;B=10a+b
\(\Leftrightarrow5B+A=5.\left(10a+b\right)+\left(a-5b\right)\)
\(\Leftrightarrow50a+5b+a-5b\)
\(\Rightarrow51a\)
Vì \(A⋮17;51a⋮17\Leftrightarrow5B⋮17\)
\(\Leftrightarrow B⋮17\Rightarrow10a+b⋮17\)
a,ta có : 2n-3 chia hết cho n+1
=> 2n-3 -2(n+1) chia hết cho n+1
=> -5 chia hết cho n+1
=> n+1 thuộc ước của -4 = 1;-1;5;-5
=> n=0;-2;4;-6
b, ta có : 3n-5 chia hết cho n-2
=> 3n-5 -3(n-2) chia hết cho n-2
=> 1 chia hết cho n-2
=> n-2 thuộc ước của 1 = 1;-1
=> n = 3;1
a) Ta có:
2n-3 chia hết cho n+1
=>2n+2-5 chia hết cho n+1
=>2(n+1)-5 chia hết cho n+1
Vì 2(n+1) chia hết cho n+1 nên 5 chia hết cho n+1
=> n+1 thuộc Ư(5). Ta có bảng:
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vậy n thuộc {0;-2;4;-6}
b) Ta có:
3n-5 chia hết cho n-2
=>3n-6+1 chia hết cho n-2
=>3(n-2)+1 chia hết cho n-2
Vì 3(n-2) chia hết cho n-2 nên 1 chia hết cho n-2
=> n-2 thuộc Ư(1). Ta có bảng:
n-2 | 1 | -1 |
n | 3 | 1 |
Vậy n thuộc {3;1}
\(3^3\equiv1\left(mod13\right)\)
\(\Rightarrow3^{99}\equiv1\left(mod13\right)\)
\(\Rightarrow3^{100}\equiv3\left(mod13\right)\)
\(\Rightarrow3^{100}-3\equiv0\left(mod13\right)\)
\(\Rightarrow3^{100}-3⋮13\)