K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2024

\(A=x^2+y^2-xy+x-y\\ =\dfrac{1}{2}\left(2x^2+2y^2-2xy+2x-2y\right)\\ =\dfrac{1}{2}\left[\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)-2\right]\\ =\dfrac{1}{2}\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2-2\right]\\ =\dfrac{1}{2}\left(x-y\right)^2+\dfrac{1}{2}\left(x+1\right)^2+\dfrac{1}{2}\left(y-1\right)^2-1\) 

Ta có: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(x+1\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.=>\left\{{}\begin{matrix}\dfrac{1}{2}\left(x-y\right)^2\ge0\forall x,y\\\dfrac{1}{2}\left(x+1\right)^2\ge0\forall x\\\dfrac{1}{2}\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)

\(=>A=\dfrac{1}{2}\left(x-y\right)^2+\dfrac{1}{2}\left(x+1\right)^2+\dfrac{1}{2}\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu "=" xảy ra: \(\left\{{}\begin{matrix}x=y\\x=-1\\y=1\end{matrix}\right.\Rightarrow x,y\in\varnothing\)

Vậy A k có GTNN

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+2^2\geq 4x$

$y^2+2^2\geq 4y$

$2(x^2+y^2)\geq 4xy$

$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$

$\Rightarrow x^2+y^2\geq 8$

Vậy $P_{\min}=8$ khi $x=y=2$

5 tháng 6 2016

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

AH
Akai Haruma
Giáo viên
19 tháng 6 2021

Lời giải:

Áp dụng BĐT AM-GM:

$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$

$\Rightarrow 3(x^2+y^2)\geq 6xy$

$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$

$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$

Cộng theo vế các BĐT trên:

$4(x^2+y^2)+18\geq 6(xy+x+y)=90$

$\Rightarrow x^2+y^2=18$

Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$

AH
Akai Haruma
Giáo viên
20 tháng 6 2021

Sầu Riêng: của em nếu $x,y$ dương thì đúng. Còn trong bài $x,y$ thực thì đến đoạn $(x+y+2)^2\geq 64$ thì không khẳng định $x+y\geq 6$ được nha.

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2