(x+2y)^3-x^+4y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+y^2+4xy+4y^2-2y=-1$
$\Leftrightarrow (x^2+4xy+4y^2)+(y^2-2y+1)=0$
$\Leftrightarrow (x+2y)^2+(y-1)^2=0$
Ta thấy $(x+2y)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì $(x+2y)^2=(y-1)^2=0$
$\Leftrightarrow y=1; x=-2$
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x-y\right)\left(x^2+8y^2\right)\)
\(=x^3-8y^3-\left(x^3-x^2y+8xy^2-8y^3\right)\)
\(=x^3-8y^3-x^3+x^2y-8xy^2+8y^3\)
\(=x^2y-8xy^2\)
Đa thức biểu thị kết quả thứ nhất: K = (x + 1)2
Đa thức biểu thị kết quả thứ hai: H = (x – 1)2
Đa thức biểu thị kết quả cuối cùng:
Q = K – H = (x + 1)2 - (x – 1)2
= (x+1).(x+1) - (x – 1). (x – 1)
= x.(x+1) + 1.(x+1) - x(x-1) + (-1). (x-1)
= x.x + x.1 + 1.x + 1.1 –[ x.x – x .1 + (-1).x + (-1) . (-1)]
= x2 + x + x + 1 – (x2 – x – x + 1)
= x2 + x + x + 1 – x2 + x + x – 1
= (x2 - x2 ) + (x+x+x+x) + (1- 1)
= 4x
Để tìm x, ta lấy kết quả cuối cùng chia cho 4
Chọn A
( x - 2 y ) x 2 + 2 x y + 4 y 2 = ( x ) 3 - ( 2 y ) 3 = x 3 - 8 y 3 .
Ta có : ( x - 2 y ) ( x 2 + 2 x y + 4 y 2 ) = ( x ) 3 - ( 2 y ) 3 = x 3 - 8 y 3 .
Ta có : ( x - 2 y ) x 2 + 2 x y + 4 y 2 = ( x ) 3 - ( 2 y ) 3 = x 3 - 8 y 3 .
Kết quả trên sai.
Ta có: (x + 2y)2 = x2 + 2.x.2y + 4y2 = x2 + 4xy + 4y2 ≠ x2 + 2xy + 4y2.
\(\left(x+2y\right)^3-x^2+4y^2\)
\(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)