K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

3A=\(3^2+3^3+3^4+...+3^{2007}\)

3A-A=2A=\(3^{2007}-3\)

A=\(\frac{3^{2007}-3}{2}\)

b.

2A+3=3^x

3^2007-3+3=3^x

3^2007=3^x

vay x=2007

22 tháng 10 2017

ta có : 3A=32+33+...+32007

3A-A=32+33+34+....+32007-3-32-33-...-32006

2A=32007-3

A=\(\frac{3^{2007}-3}{2}\)

b,

2A+3=3x

<=>32007-3+3=3x

<=> 32007=32007

<=> x = 2007

vậy x =2007

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

a: \(3A=3^2+3^3+3^4+...+3^{2007}\)

5 tháng 7 2023

\(A=3+3^2+3^3+...+3^{2015}\)

\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)

\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)

\(\Rightarrow2A=3^{2016}-3\)

\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)

Ta có: \(2A+3=3^n\)

\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)

\(\Rightarrow3^{2016}-3+3=3^n\)

\(\Rightarrow3^{2016}=3^n\)

\(\Rightarrow n=2016\)

a: Tổng các số hạng là:

\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)

Ta có: A+1=2x

\(\Leftrightarrow2x=24311\)

hay \(x=\dfrac{24311}{2}\)

24 tháng 12 2022

a,       A = 1 + 3 + 32 +  33 +....+32022

     3A   =      3  + 32  + 33 +.....+32022 + 32023

3A - A  =     32023 - 1

      2A =     32023 - 1

2A - 22023 = 32023 - 1 - 22023 

2A - 22023 = -1 

b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)

                      x + 10 \(⋮\) x - 1 

            \(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1

                            11 \(⋮\) x - 1

                    x-1 \(\in\) { -11; -1; 1; 11}

                    x     \(\in\) { -10; 0; 2; 12}

Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :

                   x   \(\in\) { -10; 0; 2; 12}

a: ĐKXĐ: x^3-3x-2<>0

=>x^3-x-2x-2<>0

=>x(x-1)(x+1)-2(x+1)<>0

=>(x+1)(x-2)(x+1)<>0

=>x<>2 và x<>-1

b: \(A=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)

c: 

A<1

=>A-1<0

\(A-1=\dfrac{x^2-2x+1-x+2}{x-2}=\dfrac{x^2-3x+3}{x-2}\)

=>x-2<0

=>x<2

17 tháng 7 2023

a) A=2x2+6x-2x2+3x-4x+6+x-2=6x+4
b) x+1=2 => x=1
Tại x=1, A=6*1+4=10
c) A=6x+4=1/2 => x=(1/2-4)/6=-7/12

17 tháng 7 2023

`!`

`a,A=2x(x+3) -(x+2)(2x-3)+x-2`

`= 2x^2 + 6x-(2x^2 -3x+4x-6)+x-2`

`= 2x^2 +6x+2x^2 +3x-4x+6+x-2`

`= (2x^2-2x^2)+(6x+3x-4x+x)+(6-2)`

`=6x+4`

`b, x+1=2`

`=>x=2-1`

`=>x=1`

`A=6x+4` mà `x=1`

Thì `6x+4=6.1+4=10`

`c,` Ta có :

`6x+4=1/2`

`=> 6x=1/2-4`

`=> 6x= -7/2`

`=>x=-7/2 : 6`

`=>x=-7/2 xx1/6`

`=>x= -7/12`