10^x+126=y^2
giúp với mau lên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nhé ta thêm bớt:
\(x^2+xy+y^2=x^2+y^2+2xy-xy=\left(x+y\right)^2-xy=\left(-2\right)^2-xy=4-xy\)
1) \(A=\left(x+y\right)^2+4xy=x^2+2xy+y^2+4xy=x^2+6xy+y^2\)
2) \(B=\left(6x-2\right)^2+4\left(3x-1\right)\left(2+y\right)+\left(y+2\right)^2\)
\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(6x-2+y+2\right)^2=\left(6x+y\right)^2=36x^2+12xy+y^2\)
3) \(C=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at, y=bt, z=ct$
Khi đó:
$(x^2+y^2+z^2)(a^2+b^2+c^2)=(a^2t^2+b^2t^2+c^2t^2)(a^2+b^2+c^2)$
$=t^2(a^2+b^2+c^2)(a^2+b^2+c^2)$
$=t^2(a^2+b^2+c^2)^2=[t(a^2+b^2+c^2)]^2$
$=(at.a+bt.b+ct.c)^2=(xa+yb+zc)^2$
Ta có đpcm.
\(=2.\left(-1\right)^2.2+4.\left(-1\right)^3.2^3+2.\left(-1\right).2^2\\ =4+\left(-32\right)+\left(-8\right)=\left(-36\right)\)