Không sử sụng máy tính, hãy so sánh \(2^{48}.3^{16}\)và\(5^{12}.4^{24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{42}=\sqrt{3\cdot14}>\sqrt{3\cdot12}=6\\ \sqrt[3]{51}=\sqrt[3]{17}< \sqrt[3]{3\cdot72}=6\\ \Rightarrow\sqrt{42}>\sqrt[3]{51}\\ b,16^{\sqrt{3}}=4^{2\sqrt{3}}\\ 18>12\Rightarrow3\sqrt{2}>2\sqrt{3}\Rightarrow4^{3\sqrt{2}}>4^{2\sqrt{3}}\\ \Rightarrow4^{3\sqrt{2}}>16^{\sqrt{3}}\)
\(c,\left(\sqrt{16}\right)^6=16^3=4^6=4^2\cdot4^4=4^2\cdot16^2\\ \left(\sqrt[3]{60}\right)^6=60^2=4^2\cdot15^2\\ 4^2\cdot16^2>4^2\cdot15^2\Rightarrow\sqrt{16}>\sqrt[3]{60}\Rightarrow0,2^{\sqrt{16}}< 0,2^{\sqrt[3]{60}}\)
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
a) 60 : (2 x 5) = 60 : 10 = 6
60 : 2 : 5 = 30 : 5 = 6
60 : 5 : 2 = 12 : 2 = 6
Vậy 60 : (2 x 5) = 60 : 2 : 5 = 60 : 5 : 2
b) (24 x 48) : 12 = 1 152 : 12 = 96
(24 : 12) x 48 = 2 x 48 = 96
24 x (48 : 12) = 24 x 4 = 96
Vậy (24 x 48) : 12 = (24 : 12) x 48 = 24 x (48 : 12)
Giả sử A > B
<=> 19 >\(5\sqrt{3}+6\sqrt{2}\)
<=> (6 + 3 - \(2\sqrt{3}\sqrt{6}\)
) + (10 - 5\(\sqrt{3}\))>0
<=> (\(\sqrt{6}-\sqrt{3}\))2 + (10 - \(5\sqrt{3}\))>0
Mà 10 - 5\(\sqrt{3}\)> 10 - 5\(\sqrt{4}\) = 0
Vậy A > B
Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn
9 + 4 5 và 16
So sánh 4 5 và 5
Ta có: 16 > 5 ⇒ 16 > 5 ⇒ 4 > 5
Vì 5 > 0 nên 4. 5 > 5 . 5 ⇒ 4 5 > 5 ⇒ 9 + 4 5 > 5 + 9
Vậy 9 + 4 5 > 16
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
\(\left(-22\right)\cdot\left(-5\right)>0\)
\(\left(-7\right)\cdot20< -7\)
(-22).(-5)và 0
do 2 số nguyên âm nhân với nhau ra số nguyên dương nên ta có thể rút gọn biểu thức thành 22.5 và 0 từ đó => 22.5>0
(-7).20 < -7
(-39).12 = 39.(-12)
(35-15).(-4)+24(-13-17)=30.(-4)+24(-13-17)=-120+24.30=-120+720=600
(-13)(57-34)+57(13-45)=-13.57-(-13).34+57.13-57.45=13.(-57)-13.(-34)+57.13-57.45=13(-57-(-34)+57)-57.45=13.34-57.45=442-2565=-2123
a) ta thấy -59/1310 <0 còn -1/-9=1/9 nên > 0. Vì vậy phân số -1/-9> -59/1310
b)-3/7<0 còn -1/-5> 0 nên -3/7<-1/-5
c) ta có:13/17 <1 còn -23/-27=23/27> 1nen -23/-27>13/17
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww