K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

ta có : x < y hay a/m < b/m   => a < b.

So sánh x, y, z ta chuyển chúng cùng mẫu : 2m

x =  a/m  = 2a/ 2m và y = b/m = 2b/2m  và z = (a + b) / 2m

mà : a < b

suy ra : a + a < b + a

hay 2a < a + b

suy ra x < z (1)

mà : a < b

suy ra : a + b < b + b

hay a + b < 2b

suy ra z < y (2)

14 tháng 8 2017

giả sử rồi sao

mk giả sử xong rồi

14 tháng 8 2017

Giả sử x = a/m, y = b/m (a, b, m ∈ Z, b # 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = (a + b)/2m thì ta có x < z < y.

4 tháng 7 2017

Đề bài kiểu này mà làm được cơ à

4 tháng 7 2017

bn có ghi thiếu đề ko vậy

16 tháng 7 2019

Vì x < y nên Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 mà m > 0 nên a < b. Ta có

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Chọn số Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7. Do 2a < 2a + 1 và m > 0 nên Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 hay x < z. (1)

Do a < b và a; b ∈ Z nên a + 1 ≤ b suy ra 2a + 2 ≤ 2b.

Ta có 2a + 1 < 2a + 2 ≤ 2b nên 2a + 1 < 2b, do đó Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 hay z < y. (2)

Từ (1) và (2) suy ra: x < z < y

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Lời giải:

Áp dụng BĐT Cô - si:

\(P=ax^m+\frac{b}{x^n}=\frac{a}{n}x^m+\frac{a}{n}x^m+...+\frac{a}{n}x^m+\frac{b}{mx^n}+...+\frac{b}{mx^n}\)

\(=(m+n)\sqrt[m+n]{(\frac{a}{n})^n.x^{mn}.(\frac{b}{m})^m.\frac{1}{x^{mn}}}\)

\(=(m+n)\sqrt[m+n]{\frac{a^nb^m}{n^n.m^m}}\)