K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

chuc mung ban da duoc ve bc

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....

 

=>(x1+x2)^2+x1x2=1

=>(-2m)^2+(-3)=1

=>4m^2=4

=>m=-1 hoặc m=1

25 tháng 5 2023

Do a = 1 và c = -3

⇒ a và c trái dấu

⇒ Phương trình luôn có hai nghiệm phân biệt

Theo Viét, ta có:

x₁ + x₂ = -2m

x₁x₂ = -3

Lại có:

x₁² + x₂² + 3x₁x₂ = 1

⇔ x₁² + 2x₁x₂ + x₂² + x₁x₂ = 1

⇔ (x₁ + x₂)² + x₁x₂ = 1

⇔ (-2m)² - 3 = 1

⇔ 4m² = 4

⇔ m² = 1

⇔ m = -1 hoặc m = 1

Vậy m = -1; m = 1 thì phương trình đã cho có hai nghiệm phân biệt x₁, x₂ thỏa mãn: x₁² + x₂² + 3x₁x₂ = 1

17 tháng 5 2023

∆ = m² - 4(m - 5)

= m² - 4m + 5

= (m² - 4m + 4) + 1

= (m - 2)² + 1 > 0 với mọi m

Phương trình luôn có 2 nghiệm phân biệt

Theo Viét ta có:

x₁ + x₂ = m (1)

x₁.x₂ = m - 5 (2)

x₁ + 2x₂ = 1 (3)

Lấy (3) - (1) ta được x₂ = 1 - m thay vào (1) ta được

x₁ + 1 - m = m

⇔ x₁ = 2m - 1

Thay x₁ = 2m - 1 và x₂ = 1 - m vào (2) ta được:

(2m - 1)(1 - m) = m - 5

⇔ 2m - 2m² - 1 + m - m + 5 = 0

⇔ -2m² + 2m + 5 = 0

∆ = 4 - 4.(-2).5

= 44

m₁ = -1 + √11

m₂ = -1 - √11

Vậy m = -1 + √11; m = -1 - √11 thì phương trình đã cho có hai nghiệm thỏa mãn x₁ + 2x₂ = 1

13 tháng 1 2023

\(x^2-11x+m-2=0\left(1\right)\)

Để phương trình (1) có 2 nghiệm phân biệt thì:

\(\Delta>0\Rightarrow\left(-11\right)^2-4.1.\left(m-2\right)>0\)

\(\Leftrightarrow121-4m+8>0\)

\(\Leftrightarrow m< \dfrac{129}{4}\)

Theo hệ thức Vi-et ta có:

\(\left\{{}\begin{matrix}x_1+x_2=11\left(1'\right)\\x_1x_2=m-2\end{matrix}\right.\).

Ta có: \(\sqrt{x^2_1-10x_1+m-1}=5-\sqrt{x_2+1}\left(2\right)\)

Đk: \(\left\{{}\begin{matrix}x_1^2-10x_1+m-1\ge0\\-1\le x_2\le24\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x^2_1-10x_1+m-1=25-10\sqrt{x_2+1}+x_2+1\)

\(\Leftrightarrow x_1^2-10x_1+\left(m-2\right)-25+10\sqrt{11-x_1+1}-x_2=0\)

\(\Rightarrow x_1^2-\left(x_1+x_2\right)-9x_1+x_1x_2-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow x_1\left(x_1+x_2\right)-11-9x_1-25+10\sqrt{12-x_1}=0\)

\(\Rightarrow11x_1-9x_1-36+10\sqrt{12-x_1}=0\)

\(\Leftrightarrow2x_1+10\sqrt{12-x_1}-36=0\)

\(\Leftrightarrow x_1+5\sqrt{12-x_1}-18=0\)

\(\Leftrightarrow18-x_1=5\sqrt{12-x_1}\left(x_1\le12\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\\left(18-x_1\right)^2=25\left(12-x_1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}18-x_1\ge0\\324-36x_1+x_1^2=300-25x_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\x_1^2-11x_1+24=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1\le18\\\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=3\\x_1=8\end{matrix}\right.\left(nhận\right)\)

Thay \(x_1=3\) vào (1') ta được:

\(3+x_2=11\Rightarrow x_2=8\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=3.8+2=26\left(thỏa\Delta>0\right)\)

Thay \(x_1=8\) vào (1') ta được:'

\(8+x_2=11\Rightarrow x_2=3\left(nhận\right)\)

\(\Rightarrow m=x_1x_2+2=8.3+2=26\left(thỏa\Delta>0\right)\)

Vậy giá trị m cần tìm là 26.

 

 

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

19 tháng 3 2023

\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)

\(-x^2-4mx+2m^2-1=0\)

\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)

Để phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)

Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=6\)

\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)

\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)

\(\Leftrightarrow20m^2=8\)

\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)

Vậy ...

28 tháng 5 2021

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

13 tháng 4 2022

undefined