K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 7

Đa thức không phân tích được thành nhân tử. Bạn xem lại nhé.

15 tháng 10 2021

\(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)

15 tháng 10 2021

phân tích ra  ii chj làm vậy ai chả lm đc

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

5 tháng 7 2019

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

5 tháng 7 2019

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

25 tháng 8 2023

\(b,x^3-2x^2-4xy^2+x\)

\(=x\left(x^2-2x-4y^2+1\right)\)

\(=x\left[\left(x^2-2x+1\right)-4y^2\right]\)

\(=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]\)

\(=x\left(x-1-2y\right)\left(x-1+2y\right)\)

\(=x\left(x-2y-1\right)\left(x+2y-1\right)\)

\(---\)

\(c,\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-8\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\) (1)

Đặt \(y=x^2+7x+10\), thay vào (1) ta được:

\(y\left(y+2\right)-8\)

\(=y^2+2y+1-9\)

\(=\left(y+1\right)^2-3^2\)

\(=\left(y+1-3\right)\left(y+1+3\right)\)

\(=\left(y-2\right)\left(y+4\right)\)

\(=\left(x^2+7x+10-2\right)\left(x^2+7x+10+4\right)\)

\(=\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)

#Ayumu

24 tháng 10 2021

Bài 6:

c: \(9x^2+6x+1=\left(3x+1\right)^2\)

d: \(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)

e: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

15 tháng 7 2016

a) xy+3x-7y-21

=x(y+3)-7(x+3)

=(x-7)(y+3)

b)2xy-15-6x-5y

=2x(y-3)-5(-3+y)

=(2x-5)(y-3)

c)2x^2y+2xy^2-2x-2y

=2x(xy-1)+2y(xy-1)

=(2x+2y)(xy-1)

x(x+3)-5x(x-5)-5(x+3)

=(x-5)(x+3)-5x(x-5)

=(x-5)(x+3-5x)

15 tháng 7 2016

Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn

29 tháng 11 2023

a: \(x^4-2x^3+x^2-2x\)

\(=\left(x^4-2x^3\right)+\left(x^2-2x\right)\)

\(=x^3\left(x-2\right)+x\left(x-2\right)\)

\(=x\left(x-2\right)\left(x^2+1\right)\)

b: \(x^4+x^3-8x-8\)

\(=\left(x^4+x^3\right)-\left(8x+8\right)\)

\(=x^3\left(x+1\right)-8\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3-8\right)\)

\(=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)

\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

19 tháng 11 2021

\(=\left(x-3\right)\left(x+3\right)+\left(x-3\right)\left(2x-5\right)\\ =\left(x-3\right)\left(x+3+2x-5\right)\\ =\left(x-3\right)\left(3x-2\right)\)

19 tháng 11 2021

\(x^2-9-\left(x-3\right)\left(5-2x\right)=\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5-2x\right)=\left(x-3\right)\left(x+3-5+2x\right)=\left(x-3\right)\left(3x-2\right)\)

24 tháng 9 2023

\(a)\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Để đơn giản hơn cũng như là dễ nhìn hơn thì ta :

Đặt : \(x^2+2x=a\)

Do đó ta có đa thức :

\(a.\left(a+4\right)+3=a^2+4a+3\)

\(=a^2+a+3a+3\)

\(=a\left(a+1\right)+3\left(a+1\right)\)

\(=\left(a+1\right)\left(a+3\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

 

24 tháng 9 2023

Hoặc bạn có thể đặt \(x^2+2x+2=t\)

Thì \(P=\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

\(P=\left(t-2\right)\left(t+2\right)+3\)

\(P=t^2-4+3\)

\(P=t^2-1\)

\(P=\left(t-1\right)\left(t+1\right)\)

\(P=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(P=\left(x+1\right)^2\left(x^2+2x+3\right)\)