K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

Ko nên ko nên

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Lời giải:

Xét tam giác ADH và AOH có:

\(\widehat{DAH}=\widehat{OAH}\) (gt)

\(\widehat{AHD}=\widehat{AHO}=90^0\)

AH chung

\(\Rightarrow \triangle ADH=\triangle AOH(g.c.g)\) (1)

\(\Rightarrow AD=AO\Rightarrow \frac{AD}{AO}=1\)

Xét tam giác ADH và AOK có: 

\(\widehat{AHD}=\widehat{AKO}=90^0\)

\(\widehat{DAH}=\widehat{OAB}=\widehat{OAK}\) (gt)

\(\Rightarrow \triangle ADH\sim \triangle AOK(g.g)\Rightarrow \frac{AH}{AK}=\frac{DH}{OK}=\frac{AD}{AO}=1\Rightarrow AH=AK;DH=OK\) 

Vì AO là phân giác của \(\widehat{HAB}\) nên theo tính chất đường phân giác thì:

\(\frac{AH}{AB}=\frac{OH}{OB}\)

Trong đó \(OH=DH\) (do (1)) nên \(OH=\frac{1}{2}OD\). Mà \(OD=OB\) theo tính chất hình bình hành

\(\Rightarrow \frac{AH}{AB}=\frac{OH}{OB}=\frac{1}{2}\)

Mà \(AH=AK\Rightarrow AK=\frac{1}{2}AB\Rightarrow AK=KB\) 

Tam giác AOB có OK vừa là đường cao vừa là đường trung tuyến nên tam giác AOB cân tại O. Do đó OA=OB hay AC=BD nên ABCD là hình chữ nhật (đpcm).

AH
Akai Haruma
Giáo viên
22 tháng 12 2020

Hình vẽ:

undefined

23 tháng 8 2020

Bạn tham khảo tại link này nha, mình giải rất chi tiết cả 3 câu a; b; c rồi đó nhaaaaaa !!!!!

Link nè: https://olm.vn/hoi-dap/detail/261219264881.html

23 tháng 7 2020

bạn tự phác hình ra nhé

a) Xét tứ giác AHCK có AH _|_ BD và CK _|_ BD => AH // CK

xét tam giác AHD và tam giác CKB có:

\(\widehat{H}=\widehat{K}=90^o\)

AD=BC

\(\widehat{ADH}=\widehat{CBK}\)

\(\Rightarrow\Delta AHD=\Delta CKB\)(cạnh huyền-góc nhọn)

=> AH=CK

vậy tứ giác AHCK là hình bình hành

b) xét hình bình hàng AHCK, trung điểm O của đường chéo HK cũng là trung điểm của đường chéo AC (tính chất đường chéo của hình bình hành) do đó 3 điểm A,O,C thẳng hàng (đpcm)

23 tháng 7 2020

a) Xét ΔAHD và ΔCKB có:
AD = BC (gt)
góc ADB = góc DBC ( SLT).
=> ΔAHD = ΔCKB (cạnh huyền- góc nhọn)
=> BH = CK( hai cạnh tương ứng)
Lấy M trung điểm BD
=> MD = MB
=> MD - DH = MB - BK
=> MH = MK (vì M Trung điểm HK)
Vì ABCD là hình bình hành nên AC cắt BD tại trung điểm M.
Hoặc M là Trung điểm AC và M trung điểm HK.
=> Tứ giác AKCH là hình bình hành (đpcm)