15.tìm số tự nhiên n,biết:
a) (\(\dfrac{2}{33}\))n.11n=\(\dfrac{4}{9}\)
b)\(\dfrac{125}{5^n}\)=5
c)\(\dfrac{\left(-6\right)^n}{36}\)=-216
d)20n:14n=\(\dfrac{10}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 1 và 2
Nếu N tận cùng là 7 =>N+45 có tận cùng là 2 mà số chính phương không có số nào có tận cùng là 2 nên 1 và 2 có 1 cái sai
Xét 2 và 3
N có chữ số tận cùng là 7 =>N-44 có tận cùng là 3 mà số chính phương không có số nào có tận cùng là 3 nên 2 và 3 có 1 cái sai
=>1 và 3 đúng 2 sai
để \(\left|8-x\right|=8-x< =>8-x\ge0< =>x\le8\)
\(=>8-x=x^2+x< =>x^2+2x-8=0\)
\(< =>\left(x+1\right)^2-3^2=0< =>\left(x-2\right)\left(x+4\right)=0\)
\(=>\left[{}\begin{matrix}x=2\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\)
*để\(\left|8-x\right|=x-8< =>8-x< 0< =>x>8\)
\(=>x-8=x^2+x< =>x^2=-8\)(vô lí)
vậy x=2 hoặc x=-4
Thủ Lĩnh Thẻ Bài SAKURA
Gọi số cần tìm là abc ; abc viết theo thứ tự ngược lại có dạng là cba
Theo đề bài, ta có : cba - abc = 792
c x 100+b x10+ a - a x100 + b x10 +c= 792
c x100 - c +b x10 - b x 10 + a - a x100 = 792
c x 99 + a - a x 100 = 792
c x 99 + a = 792 + a x 100
c x 99 = 792 + a x100 - a
c x 99 = 792 + a x 99
c x 99 - a x99 = 792
(c - a) x 99 = 792
c - a = 792 : 99 = 8
Ta có : c b a
- a b c
7 9 2
Xét a và c : c - a = 8 nhưng trong phép tính c - a = 7 suy ra đây là phép trừ có nhớ và a < c nên phải lấy 1a - c = 2 ; nhớ 1 sang b ở số trừ. Nếu c lớn nhất = 9 thì a = 1 ta có : 11 - 9 = 2 ( đúng )
suy ra c =9; a = 1. Ta có :
9 b 1
- 1 b 9
7 9 2
suy ra b = 0 để b - ( b+ 1) có nhớ. Ta có :
901 - 109 = 792 Đ
Vậy số cần tìm là 109
Mệnh đề này đúng là bởi vì 12 là bội chung của cả 2 và 3
cho nên khi n chia hết cho 12 thì chắc chắn n sẽ chia hết cho 2 và 3
thêm 0 vào dãy trên
nhận xét
tổng chữ số của 0 và 1999 là
1+9+9+9=28
tổng các chữ số của 1 và 1998 là
1+9+9+8+1=28
tổng các chữ số của 2 và 1997 là
1+9+9+7+2=28
ta thấy cứ 2 số hạng đầu và cuối đều có tổng=28 như vậy có 1000 nhóm do đó tổng các chữ số là
28x1000=28000
từ 1 đến 1999 có 1999 số
tổng tất cả các số của dãy đó là:
(1+1999)x1999:2=1999000
- Điều kiện: x ≠ ±3
- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.
- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3
x1 có thỏa mãn điều kiện nói trên
x2 không thỏa mãn điều kiện nói trên
Vậy nghiệm của phương trình đã cho là: x = 1
\(a.\left(\dfrac{2}{33}\right)^n\cdot11^n=\dfrac{4}{9}\\ \left(\dfrac{2}{33}\cdot11\right)^n=\left(\dfrac{2}{3}\right)^2\\ \left(\dfrac{2}{3}\right)^n=\left(\dfrac{2}{3}\right)^2\\ n=2\\ b.\dfrac{125}{5^n}=5\\\dfrac{ 5^3}{5^n}=5\\ 5^{3-n}=5^1\\ 3-n=1\\ n=3-1\\ n=2\\ c.\dfrac{\left(-6\right)^n}{36}=-216\\ \dfrac{\left(-6\right)^n}{\left(-6\right)^2}=\left(-6\right)^3\\ =\left(-6\right)^{n-2}=\left(-6\right)^3\\ n-2=3\\ n=2+3\\ n=5\\ d.20^n:14^n=\dfrac{10}{7}\\ \left(\dfrac{20}{14}\right)^n=\dfrac{10}{7}\\ \left(\dfrac{10}{7}\right)^n=\left(\dfrac{10}{7}\right)^1\\ n=1\)