s=\(1+9+9^2+...+9^{2017}\)
chứng minh tổng s chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(9S=9+9^2+9^3+...+9^{2018}\)
=>\(8S=9^{2018}-1\)
hay \(S=\dfrac{9^{2018}-1}{8}\)
b: \(S=\left(1+9\right)+9^2\left(1+9\right)+...+9^{2016}\left(1+9\right)\)
\(=10\left(1+9^2+...+9^{2016}\right)⋮10\)
a: \(9S=9+9^2+9^3+...+9^{2018}\)
=>\(8S=9^{2018}-1\)
hay \(S=\dfrac{9^{2018}-1}{8}\)
b: \(S=\left(1+9\right)+9^2\left(1+9\right)+...+9^{2016}\left(1+9\right)\)
\(=10\left(1+9^2+...+9^{2016}\right)⋮10\)
a là x và y thuộc nhóm rỗng
b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009
c là vì 4S+1 là 5^2016 chia hết cho 5^2016
vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S
Bài 1:
Ta có:
\(9^{10}\div9^9=9\)
Và \(\left(8^9+7^9+6^9+5^9+...+2^9+1^9\right)\div9^9\)
\(=\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+\left(\dfrac{6}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9\)
Mà \(\left(\dfrac{8}{9}\right)^9< 1;\left(\dfrac{7}{9}\right)^9< 1;...;\left(\dfrac{1}{9}\right)^9< 1\)
\(\Rightarrow\left(\dfrac{8}{9}\right)^9+\left(\dfrac{7}{9}\right)^9+...+\left(\dfrac{1}{9}\right)^9< 1+1+...+1=9\)
Vậy \(9^{10}>8^9+7^9+6^9+...+2^9+1^9\)
Bài 2:
\(45=9.5\)
Ta có:
\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}36^{39}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Leftrightarrow\left(36^{39}-9^{10}\right)⋮9\)
Lại có:
\(36^{39}=\overline{...6}^{39}=\overline{...6}\Rightarrow36^{39}\) có chữ số tận cùng là \(6\)
Nên chia cho \(5\) dư \(1\)
\(9^{10}\) cũng có chữ số tận cùng là chữ số \(1\)
Nên chia cho \(5\) cũng dư \(1\)
\(\Rightarrow\left(36^{39}-9^{10}\right)⋮5\)
Mà \(\left(5;9\right)=1\) Nên \(\left(36^{39}-9^{10}\right)⋮45\) (Đpcm)
1/Tacó:
89^99 + 79^99 + 69^99 + 59^99 +......+ 29^99 + 19^99 < 89^99 . 8 = 810^{10}10<910^{10}10
=> 89^99 + 79^99 + 69^99 + 59^99 +.......+ 29^99 +19^99 < 910^{10}10
mk chỉ lm đc bài 1 thôi b ạ b2 mk chịu
Ta có:
\(8^9+7^9+6^9+5^9+...+2^9+1^9\)
\(=\left(8^3+7^3+6^3+5^3+...+2^3+1^3\right)^2\)
\(=\left(\left(8+7+6+5+...+2+1\right)^2\right)^2\)
\(=\left(8+7+6+5+...+2+1\right)^4\)
\(=36^4\)
\(=9^4.4^4\)
\(9^{10}=9^4.9^6\)
Vì \(9^4.9^6>9^4.4^4\)
\(\Rightarrow9^{10}>8^9+7^9+6^9+5^9+...+2^9+1^9\)
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
\(S=1+9+9^2+...+9^{2017}.\)
\(S=\left(1+9\right)+\left(9^2+9^3\right)+....+\left(9^{2016}+9^{2017}\right)\)
\(S=10+10.9^2+...+10.9^{2016}\)
\(S=1.\left(1+9^2+....+9^{2016}\right)⋮10\)
\(\Rightarrow S⋮10\)
sorry . mình viết thiếu số 0 .