\(\left(2\dfrac{1}{2}+3\right):\left(-\dfrac{1}{3}+\dfrac{2}{5}\right)\)
tính hợp lý giúp mình aaa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{7}{12}+\dfrac{5}{72}-\dfrac{11}{36}=\dfrac{42}{72}+\dfrac{5}{72}-\dfrac{22}{72}=\dfrac{25}{72}\)
b: \(B=\dfrac{8+5}{10}:\dfrac{-5}{13}=\dfrac{13}{10}\cdot\dfrac{13}{-5}=-\dfrac{169}{100}\)
c: \(C=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}+\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)
1, \(\dfrac{-3}{5}:\dfrac{7}{5}-\dfrac{3}{5}:\dfrac{7}{5}+2\dfrac{3}{5}\)
\(=\left(\dfrac{-3}{5}-\dfrac{3}{5}\right):\dfrac{7}{5}+\dfrac{13}{5}\)
\(=\dfrac{-6}{5}:\dfrac{7}{5}+\dfrac{13}{5}\)
\(=\dfrac{-6}{7}+\dfrac{13}{5}\\ =\dfrac{61}{35}\)
2, \(0,75-\left(2\dfrac{1}{3}+0,75\right)+3^2\cdot\left(-\dfrac{1}{9}\right)\)
\(=0,75-\dfrac{37}{12}+9\cdot\left(-\dfrac{1}{9}\right)\)
\(=-\dfrac{7}{3}+\left(-1\right)\\ -\dfrac{10}{3}\)
Giải:
1) (-8/13:3/7+-5/13:3/7).(-4)3.|-3|/7
=[7/3.(-8/13+-5/13)].-192/7
=[7/3.(-1)].-192/7
=-7/3.-192/7
=64
2) 75%-(5/2+5/3)+(-1/2)2
=3/4-25/6+1/4
=(3/4+1/4)-25/6
=1-25/6
=-19/6
Chúc bạn học tốt!
1) \(\left(\dfrac{-8}{13}:\dfrac{3}{7}+\dfrac{-5}{13}:\dfrac{3}{7}\right).\dfrac{\left(-4\right).|-3|}{7}\)
= \(\left[\left(\dfrac{-8}{13}+\dfrac{-5}{13}\right):\dfrac{3}{7}\right].\dfrac{-64.3}{7}\)
= \(\left[-1:\dfrac{3}{7}\right].\dfrac{-192}{7}\)
= \(\dfrac{-7}{3}.\dfrac{-192}{7}\)
= \(64\)
2) \(75\%-\left(\dfrac{5}{2}+\dfrac{5}{3}\right)+\left(-\dfrac{1}{2}\right)^2\)
= \(\dfrac{3}{4}-\dfrac{25}{6}+\dfrac{1}{4}\)
= \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)-\dfrac{25}{6}\)
= \(1-\dfrac{25}{6}\)
= \(\dfrac{-19}{6}\)
Chúc bạn học tốt !
a/ \(\lim\limits\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}=\lim\limits\dfrac{\dfrac{\left(\dfrac{1}{3}\right)^{n+1}-1}{\dfrac{1}{3}-1}}{\dfrac{\left(\dfrac{1}{2}\right)^{n+1}-1}{\dfrac{1}{2}-1}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}=3\)
b/ \(\lim\limits\left(n^3+n\sqrt{n}-5\right)=+\infty-5=+\infty\)
a) \(\dfrac{-3}{5}+\dfrac{7}{21}+\dfrac{-4}{5}+\dfrac{7}{5}\)
\(=\left(-\dfrac{3}{5}+\dfrac{-4}{5}+\dfrac{7}{5}\right)+\dfrac{7}{21}\)
\(=0+\dfrac{7}{21}\)
\(=\dfrac{7}{21}\)
b) `-3/17 + ( 2/3 + 3/17)`
` = -3/17 + 2/3 + 3/17`
` = 2/3 + ( -3/17 +3/17)`
` = 2/3 + 0`
` = 2/3`
c)
` -5/21 + ( -16/21 +1)`
\(=\dfrac{-5}{21}+\dfrac{-16}{21}+1\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1=0\)
\(\dfrac{3}{7}.\left(-\dfrac{2}{5}\right).2\dfrac{1}{3}.20.\dfrac{19}{72}\)
\(=\dfrac{3}{7}.\left(-\dfrac{2}{5}\right).\dfrac{7}{3}.20.\dfrac{19}{72}\)
\(=\left(-\dfrac{6}{35}\right).\dfrac{7}{3}.20.\dfrac{19}{72}\)
\(=\left(-\dfrac{2}{5}\right).20.\dfrac{19}{72}\)
\(=\left(-8\right).\dfrac{19}{72}\)
\(=-\dfrac{19}{9}\)
\(=\dfrac{3}{7}\cdot\dfrac{7}{3}\cdot\dfrac{-2}{5}\cdot20\cdot\dfrac{19}{72}=-8\cdot\dfrac{19}{72}=-\dfrac{19}{9}\)
..................................................................
a: \(\left(0.5\right)^3\cdot2^3=1\)
b: \(\left(0.25\right)^2\cdot16=1\)
c: \(\left(\dfrac{3}{5}\right)^3:\left(-\dfrac{27}{1000}\right)=\dfrac{3^3}{5^3}\cdot\dfrac{-1000}{27}=\dfrac{-1000}{125}=-8\)
\(\left(2\dfrac{1}{2}+3\right):\left(-\dfrac{1}{3}+\dfrac{2}{5}\right)\)
=\(\left(\dfrac{5}{2}+\dfrac{6}{2}\right):\left(-\dfrac{5}{15}+\dfrac{6}{15}\right)\)
= \(\dfrac{11}{2}:\dfrac{1}{15}\)
=\(\dfrac{165}{2}\)