tìm x, biết: x^3 + x^2 -36=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`1,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`2,`
`25 - x^2 = 0`
`<=> x^2 = 25 - 0`
`<=> x^2 = 25`
`<=> x^2 = (+-5)^2`
`<=> x = +-5`
Vậy,` S= {5; -5}`
`3,`
`-x^2 + 36 = 0`
`<=> -x^2 = 0 - 36`
`<=> -x^2 = -36`
`<=> x^2 = 36`
`<=> x^2 = (+-6)^2`
`<=> x = +-6`
Vậy, `S= {6; -6}`
`4,`
`4x^2 - 4 = 0`
`<=> 4x^2 = 0+4`
`<=> 4x^2 = 4`
`<=> x^2 = 4 \div 4`
`<=> x^2 = 1`
`<=> x^2 = (+-1)^2`
`<=> x = +-1`
Vậy, `S= {1; -1}`
`@` `\text {Kaizuu lv uuu}`
\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\left(x-4\right)\left(x^2-9\right)=0\)\(\)
\(\Rightarrow x-4=0\) hay \(x^2-9=0\)
\(\Rightarrow x=4\) hay \(x^2=9=3^2\)
\(\Rightarrow x=4\) hay \(x=\pm3\)
⇔x2(x-4) -9(x-4) = 0
⇔(x-4).(x-3).(x+3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
\(\left(x^2-36\right)\left(x^2-3\right)< 0\)
Mà \(\left(x^2-36\right)< \left(x^2-3\right)\)nên
\(3< x^2< 36\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{3}< x< 6\\-\sqrt{3}>x>-6\end{cases}}\)
\(5,4x^2-36=0\\ \Leftrightarrow\left(2x\right)^2-6^2=0\\ \Leftrightarrow\left(2x-6\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{3;-3\right\}\)
\(7,\left(3x+1\right)^2-16=0\\ \Leftrightarrow\left(3x+1\right)^2-4^2=0\\ \Leftrightarrow\left(3x+1-4\right)\left(3x+1+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-3=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{5}{3}\right\}\)
\(8,\left(2x-3\right)^2-49=0\\ \Leftrightarrow\left(2x-3\right)^2-7^2=0\\ \Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-10=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;5\right\}\)
a) \(\left(x^2-3\right)\left(x^2-36\right)=0\)
TH1: \(x^2-3=0\Rightarrow x^2=3\)
Ta thấy không có số nguyên nào mà bình phương nên bằng 3 nên không có giá trị x thỏa mãn.
TH2: \(x^2-36=0\Rightarrow x^2=36=6.6=\left(-6\right).\left(-6\right)\)
Vậy x = 6 hoặc x = -6.
b) \(\left(x^2-3\right)\left(x^2-36\right)< 0\)
Do \(x^2-3>x^2-36\) nên chỉ có thể xảy ra trường hợp \(\hept{\begin{cases}x^2-3>0\\x^2-36< 0\end{cases}}\)
\(\Rightarrow3\le x^2\le36\Rightarrow2\le x\le6\) hoặc \(-6\le x\le-2\)
\(x^3+x^2-36=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)+\left(4x^2-12x\right)+\left(12x-36\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+4x+12\right)=0\)
Mà \(x^2+4x+12=\left(x^2+4x+4\right)+8\)
\(=\left(x+2\right)^2+8>0\)\(\forall x\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
Vậy\(x=3\)