K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

A = 1+7+72+73+...+799, B= 7100

Xét A = 1+7+72+73+...+799

=> 7.A = 7 + 72 + 73 + 74 +...+ 7100

=> 7.A - A = 7100 - 1

=> 6.A = 7100 - 1

=> A  = \(\frac{7^{100}-1}{6}< \frac{7^{100}}{6}\).

hay A < B

20 tháng 10 2017

Ta có B = 7100 /6

         A = 7100 -1/6(vì sao tự hiểu)

=> A=7100-1

     B=7100

Vì cả hai đều /6

=> b>a

1 tháng 5 2022

help me

1 tháng 5 2022

umm, bn nhân A với 1/7 và nhân B với 1/9, sau đó tính ra và so sánh thôi

 

20 tháng 9 2023

\(A=7+7+7^2+...+7^{100}\)

\(7A=7^2+7^2+7^3+...+7^{101}\)

\(A=14+7^2+7^{101}\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Em xem thử lại đề bài nhé

12 tháng 11 2021

M = 7 + 72 + 73 + 74 + ..... + 7100 

M = 7+(1+7)+73+(1+7)+...+799+(1+7)

M = 7x8+73x8+...+799x8

M = 8x(7+73+...+799)

mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8

Vậy M chia hết cho 8

21 tháng 6 2023
   

F = 7 + 72 + 73 + 74 + ..... + 7100 

F= 7+(1+7)+73+(1+7)+...+799+(1+7)

F = 7x8+73x8+...+799x8

F= 8x(7+73+...+799)

mà 8 chia hết 8 => 8(7+73+...+799) chia hết 8

Vậy F chia hết cho 8

21 tháng 6 2023

2)

\(F=7+7^2+7^3+7^4+...+7^{100}\\ F=7\cdot\left(1+7\right)+7^3\cdot\left(1+7\right)+.....+7^{99}\cdot\left(1+7\right)\\F=7\cdot8+7^3\cdot8+.....+7^{99}\cdot8\\ F=8\cdot\left(7+7^3+....+7^{99}\right)\\ =>F⋮8\) 

21 tháng 10 2017

neu bot mot canh hinnh vuong di 7 m va bot mot canh khac di 25 m thi duoc mot hinh chu nhat co chieu dai gap 3 lan chieu rong tinh chu vi va dien h hinh vuong

23 tháng 12 2021

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2021

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.

28 tháng 12 2024

A = 7 + 72 + 73 + ... + 7119 + 7120

A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)

A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)

A = 7.57 + 74.57 + ... + 7118.57

A = 57(7 + 74 + ... + 7118)

Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57

\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)

10 tháng 1 2022

\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)